Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Productivity Prediction Model of Perforated Horizontal Well Based on Permeability Calculation in Near-Well High Permeability Reservoir Area

    Shuangshuang Zhang1,*, Kangliang Guo1, Xinchen Gao1, Haoran Yang1, Jinfeng Zhang2, Xing Han3

    Energy Engineering, Vol.121, No.1, pp. 59-75, 2024, DOI:10.32604/ee.2023.041709 - 27 December 2023

    Abstract To improve the productivity of oil wells, perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation. After the perforation operation, the perforation channel around the wellbore will form a near-well high-permeability reservoir area with the penetration depth as the radius, that is, the formation has different permeability characteristics with the perforation depth as the dividing line. Generally, the permeability is measured by the permeability tester, but this approach has a high workload and limited application. In this paper, according to the reservoir characteristics of perforated horizontal wells, the reservoir… More >

  • Open Access

    ARTICLE

    A Productivity Prediction Method Based on Artificial Neural Networks and Particle Swarm Optimization for Shale-Gas Horizontal Wells

    Bin Li*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2729-2748, 2023, DOI:10.32604/fdmp.2023.029649 - 25 June 2023

    Abstract In order to overcome the deficiencies of current methods for the prediction of the productivity of shale gas horizontal wells after fracturing, a new sophisticated approach is proposed in this study. This new model stems from the combination several techniques, namely, artificial neural network (ANN), particle swarm optimization (PSO), Imperialist Competitive Algorithms (ICA), and Ant Clony Optimization (ACO). These are properly implemented by using the geological and engineering parameters collected from 317 wells. The results show that the optimum PSO-ANN model has a high accuracy, obtaining a R2 of 0.847 on the testing. The partial dependence More >

Displaying 1-10 on page 1 of 2. Per Page