Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Sales Prediction and Product Recommendation Model Through User Behavior Analytics

    Xian Zhao, Pantea Keikhosrokiani*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3855-3874, 2022, DOI:10.32604/cmc.2022.019750 - 27 September 2021

    Abstract The COVID-19 has brought us unprecedented difficulties and thousands of companies have closed down. The general public has responded to call of the government to stay at home. Offline retail stores have been severely affected. Therefore, in order to transform a traditional offline sales model to the B2C model and to improve the shopping experience, this study aims to utilize historical sales data for exploring, building sales prediction and recommendation models. A novel data science life-cycle and process model with Recency, Frequency, and Monetary (RFM) analysis method with the combination of various analytics algorithms are… More >

  • Open Access

    ARTICLE

    Personalised Product Recommendation Model Based on User Interest

    Jitao Zhang

    Computer Systems Science and Engineering, Vol.34, No.4, pp. 231-236, 2019, DOI:10.32604/csse.2019.34.231

    Abstract The scale of e-commerce systems is increasing and more and more products are being offered online. However, users must find their own desired products among a large amount of unrelated information, which makes it increasingly difficult for them to make a purchase. In order to solve this problem of information overload, and effectively assist e-commerce users to shop easily and conveniently, an e-commerce personalized recommendation system technology has been proposed. This paper introduces the design and implementation of a personalized product recommendation model based on user interest. The “shopping basket analysis” functional model centered on… More >

  • Open Access

    ARTICLE

    A Recommendation Approach Based on Product Attribute Reviews: Improved Collaborative Filtering Considering the Sentiment Polarity

    Min Cao1, Sijing Zhou1, Honghao Gao1,2,3

    Intelligent Automation & Soft Computing, Vol.25, No.3, pp. 595-604, 2019, DOI:10.31209/2019.100000114

    Abstract Recommender methods using reviews have become an area of active research in e-commerce systems. The use of auxiliary information in reviews as a way to effectively accommodate sparse data has been adopted in many fields, such as the product field. The existing recommendation methods using reviews typically employ aspect preference; however, the characteristics of product reviews are not considered adequate. To this end, this paper proposes a novel recommendation approach based on using product attributes to improve the efficiency of recommendation, and a hybrid collaborative filtering is presented. The product attribute model and a new More >

Displaying 1-10 on page 1 of 3. Per Page