Hao Sun*, Xiubo Chen, Kaiguo Yuan
CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2361-2373, 2024, DOI:10.32604/cmc.2024.049159
- 15 May 2024
Abstract Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data. However, there is still a potential risk of privacy leakage, for example, attackers can obtain the original data through model inference attacks. Therefore, safeguarding the privacy of model parameters becomes crucial. One proposed solution involves incorporating homomorphic encryption algorithms into the federated learning process. However, the existing federated learning privacy protection scheme based on homomorphic encryption will greatly reduce the efficiency and robustness when there are performance differences between parties or abnormal nodes. To solve the above… More >