Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access

    ARTICLE

    Trust Score-Based Malicious Vehicle Detection Scheme in Vehicular Network Environments

    Wenming Wang1,2,3,*, Zhiquan Liu1, Shumin Zhang1, Guijiang Liu1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2517-2545, 2024, DOI:10.32604/cmc.2024.055184 - 18 November 2024

    Abstract Advancements in the vehicular network technology enable real-time interconnection, data sharing, and intelligent cooperative driving among vehicles. However, malicious vehicles providing illegal and incorrect information can compromise the interests of vehicle users. Trust mechanisms serve as an effective solution to this issue. In recent years, many researchers have incorporated blockchain technology to manage and incentivize vehicle nodes, incurring significant overhead and storage requirements due to the frequent ingress and egress of vehicles within the area. In this paper, we propose a distributed vehicular network scheme based on trust scores. Specifically, the designed architecture partitions multiple More >

  • Open Access

    EDITORIAL

    Introduction to the Special Issue on The Bottleneck of Blockchain Techniques Scalability, Security and Privacy Protection

    Shen Su1,*, Daojing He2, Neeraj Kumar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 1933-1937, 2024, DOI:10.32604/cmes.2024.059318 - 31 October 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    An Efficient and Secure Privacy-Preserving Federated Learning Framework Based on Multiplicative Double Privacy Masking

    Cong Shen1,*, Wei Zhang1,2,*, Tanping Zhou1,2, Yiming Zhang1, Lingling Zhang3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4729-4748, 2024, DOI:10.32604/cmc.2024.054434 - 12 September 2024

    Abstract With the increasing awareness of privacy protection and the improvement of relevant laws, federal learning has gradually become a new choice for cross-agency and cross-device machine learning. In order to solve the problems of privacy leakage, high computational overhead and high traffic in some federated learning schemes, this paper proposes a multiplicative double privacy mask algorithm which is convenient for homomorphic addition aggregation. The combination of homomorphic encryption and secret sharing ensures that the server cannot compromise user privacy from the private gradient uploaded by the participants. At the same time, the proposed TQRR (Top-Q-Random-R) More >

  • Open Access

    ARTICLE

    Hierarchical Privacy Protection Model in Advanced Metering Infrastructure Based on Cloud and Fog Assistance

    Linghong Kuang1,2, Wenlong Shi1,2, Jing Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3193-3219, 2024, DOI:10.32604/cmc.2024.054377 - 15 August 2024

    Abstract The Advanced Metering Infrastructure (AMI), as a crucial subsystem in the smart grid, is responsible for measuring user electricity consumption and plays a vital role in communication between providers and consumers. However, with the advancement of information and communication technology, new security and privacy challenges have emerged for AMI. To address these challenges and enhance the security and privacy of user data in the smart grid, a Hierarchical Privacy Protection Model in Advanced Metering Infrastructure based on Cloud and Fog Assistance (HPPM-AMICFA) is proposed in this paper. The proposed model integrates cloud and fog computing… More >

  • Open Access

    ARTICLE

    Enhancing Security and Privacy in Distributed Face Recognition Systems through Blockchain and GAN Technologies

    Muhammad Ahmad Nawaz Ul Ghani1, Kun She1,*, Muhammad Arslan Rauf1, Shumaila Khan2, Javed Ali Khan3, Eman Abdullah Aldakheel4, Doaa Sami Khafaga4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2609-2623, 2024, DOI:10.32604/cmc.2024.049611 - 15 May 2024

    Abstract The use of privacy-enhanced facial recognition has increased in response to growing concerns about data security and privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a variety of industries, including access control, law enforcement, surveillance, and internet communication. However, the growing usage of face recognition technology has created serious concerns about data monitoring and user privacy preferences, especially in context-aware systems. In response to these problems, this study provides a novel framework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain, and distributed computing… More >

  • Open Access

    ARTICLE

    VKFQ: A Verifiable Keyword Frequency Query Framework with Local Differential Privacy in Blockchain

    Youlin Ji, Bo Yin*, Ke Gu

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4205-4223, 2024, DOI:10.32604/cmc.2024.049086 - 26 March 2024

    Abstract With its untameable and traceable properties, blockchain technology has been widely used in the field of data sharing. How to preserve individual privacy while enabling efficient data queries is one of the primary issues with secure data sharing. In this paper, we study verifiable keyword frequency (KF) queries with local differential privacy in blockchain. Both the numerical and the keyword attributes are present in data objects; the latter are sensitive and require privacy protection. However, prior studies in blockchain have the problem of trilemma in privacy protection and are unable to handle KF queries. We… More >

  • Open Access

    ARTICLE

    A Cover-Independent Deep Image Hiding Method Based on Domain Attention Mechanism

    Nannan Wu1, Xianyi Chen1,*, James Msughter Adeke2, Junjie Zhao2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3001-3019, 2024, DOI:10.32604/cmc.2023.045311 - 26 March 2024

    Abstract Recently, deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information hiding. However, these approaches have some limitations. For example, a cover image lacks self-adaptability, information leakage, or weak concealment. To address these issues, this study proposes a universal and adaptable image-hiding method. First, a domain attention mechanism is designed by combining the Atrous convolution, which makes better use of the relationship between the secret image domain and the cover image domain. Second, to improve perceived human similarity, perceptual loss is incorporated into the training process. The experimental results are promising, with More >

  • Open Access

    REVIEW

    Multi-Robot Privacy-Preserving Algorithms Based on Federated Learning: A Review

    Jiansheng Peng1,2,*, Jinsong Guo1, Fengbo Bao1, Chengjun Yang2, Yong Xu2, Yong Qin2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2971-2994, 2023, DOI:10.32604/cmc.2023.041897 - 26 December 2023

    Abstract The robotics industry has seen rapid development in recent years due to the Corona Virus Disease 2019. With the development of sensors and smart devices, factories and enterprises have accumulated a large amount of data in their daily production, which creates extremely favorable conditions for robots to perform machine learning. However, in recent years, people’s awareness of data privacy has been increasing, leading to the inability to circulate data between different enterprises, resulting in the emergence of data silos. The emergence of federated learning provides a feasible solution to this problem, and the combination of… More >

  • Open Access

    REVIEW

    Ensuring User Privacy and Model Security via Machine Unlearning: A Review

    Yonghao Tang1, Zhiping Cai1,*, Qiang Liu1, Tongqing Zhou1, Qiang Ni2

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2645-2656, 2023, DOI:10.32604/cmc.2023.032307 - 29 November 2023

    Abstract As an emerging discipline, machine learning has been widely used in artificial intelligence, education, meteorology and other fields. In the training of machine learning models, trainers need to use a large amount of practical data, which inevitably involves user privacy. Besides, by polluting the training data, a malicious adversary can poison the model, thus compromising model security. The data provider hopes that the model trainer can prove to them the confidentiality of the model. Trainer will be required to withdraw data when the trust collapses. In the meantime, trainers hope to forget the injected data More >

  • Open Access

    ARTICLE

    A Conditionally Anonymous Linkable Ring Signature for Blockchain Privacy Protection

    Quan Zhou1,*, Yulong Zheng1, Minhui Chen2, Kaijun Wei2

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2851-2867, 2023, DOI:10.32604/csse.2023.039908 - 09 November 2023

    Abstract In recent years, the issue of preserving the privacy of parties involved in blockchain transactions has garnered significant attention. To ensure privacy protection for both sides of the transaction, many researchers are using ring signature technology instead of the original signature technology. However, in practice, identifying the signer of an illegal blockchain transaction once it has been placed on the chain necessitates a signature technique that offers conditional anonymity. Some illegals can conduct illegal transactions and evade the law using ring signatures, which offer perfect anonymity. This paper firstly constructs a conditionally anonymous linkable ring… More >

Displaying 1-10 on page 1 of 45. Per Page