Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Evaluating Partitioning Based Clustering Methods for Extended Non-negative Matrix Factorization (NMF)

    Neetika Bhandari1,*, Payal Pahwa2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2043-2055, 2023, DOI:10.32604/iasc.2023.028368 - 19 July 2022

    Abstract Data is humongous today because of the extensive use of World Wide Web, Social Media and Intelligent Systems. This data can be very important and useful if it is harnessed carefully and correctly. Useful information can be extracted from this massive data using the Data Mining process. The information extracted can be used to make vital decisions in various industries. Clustering is a very popular Data Mining method which divides the data points into different groups such that all similar data points form a part of the same group. Clustering methods are of various types. More >

  • Open Access

    ARTICLE

    Research on Privacy Preserving Data Mining

    Pingshui Wang1,*, Tao Chen1,2, Zecheng Wang1

    Journal of Information Hiding and Privacy Protection, Vol.1, No.2, pp. 61-68, 2019, DOI:10.32604/jihpp.2019.05943

    Abstract In recent years, with the explosive development in Internet, data storage and data processing technologies, privacy preservation has been one of the greater concerns in data mining. A number of methods and techniques have been developed for privacy preserving data mining. This paper provided a wide survey of different privacy preserving data mining algorithms and analyzed the representative techniques for privacy preservation. The existing problems and directions for future research are also discussed. More >

Displaying 1-10 on page 1 of 2. Per Page