Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    MADDPG-D2: An Intelligent Dynamic Task Allocation Algorithm Based on Multi-Agent Architecture Driven by Prior Knowledge

    Tengda Li, Gang Wang, Qiang Fu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2559-2586, 2024, DOI:10.32604/cmes.2024.052039 - 08 July 2024

    Abstract Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation (DTA) and high-dimensional decision space with single agent, this paper combines the deep reinforcement learning (DRL) theory and an improved Multi-Agent Deep Deterministic Policy Gradient (MADDPG-D2) algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA. The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, and considers the introduction of a double noise mechanism to increase the action exploration… More >

  • Open Access

    ARTICLE

    Arrhythmia Detection by Using Chaos Theory with Machine Learning Algorithms

    Maie Aboghazalah1,*, Passent El-kafrawy2, Abdelmoty M. Ahmed3, Rasha Elnemr5, Belgacem Bouallegue3, Ayman El-sayed4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3855-3875, 2024, DOI:10.32604/cmc.2023.039936 - 20 June 2024

    Abstract Heart monitoring improves life quality. Electrocardiograms (ECGs or EKGs) detect heart irregularities. Machine learning algorithms can create a few ECG diagnosis processing methods. The first method uses raw ECG and time-series data. The second method classifies the ECG by patient experience. The third technique translates ECG impulses into Q waves, R waves and S waves (QRS) features using richer information. Because ECG signals vary naturally between humans and activities, we will combine the three feature selection methods to improve classification accuracy and diagnosis. Classifications using all three approaches have not been examined till now. Several More >

  • Open Access

    ARTICLE

    Cascade Human Activity Recognition Based on Simple Computations Incorporating Appropriate Prior Knowledge

    Jianguo Wang1, Kuan Zhang1,*, Yuesheng Zhao2,*, Xiaoling Wang2, Muhammad Shamrooz Aslam2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 79-96, 2023, DOI:10.32604/cmc.2023.040506 - 31 October 2023

    Abstract The purpose of Human Activities Recognition (HAR) is to recognize human activities with sensors like accelerometers and gyroscopes. The normal research strategy is to obtain better HAR results by finding more efficient eigenvalues and classification algorithms. In this paper, we experimentally validate the HAR process and its various algorithms independently. On the base of which, it is further proposed that, in addition to the necessary eigenvalues and intelligent algorithms, correct prior knowledge is even more critical. The prior knowledge mentioned here mainly refers to the physical understanding of the analyzed object, the sampling process, the More >

Displaying 1-10 on page 1 of 3. Per Page