Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    MAIPFE: An Efficient Multimodal Approach Integrating Pre-Emptive Analysis, Personalized Feature Selection, and Explainable AI

    Moshe Dayan Sirapangi1, S. Gopikrishnan1,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2229-2251, 2024, DOI:10.32604/cmc.2024.047438 - 15 May 2024

    Abstract Medical Internet of Things (IoT) devices are becoming more and more common in healthcare. This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way. Existing methods, while useful, have limitations in predictive accuracy, delay, personalization, and user interpretability, requiring a more comprehensive and efficient approach to harness modern medical IoT devices. MAIPFE is a multimodal approach integrating pre-emptive analysis, personalized feature selection, and explainable AI for real-time health… More >

Displaying 1-10 on page 1 of 1. Per Page