Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    Using Machine Learning to Determine the Efficacy of Socio-Economic Indicators as Predictors for Flood Risk in London

    Grace Gau1, Minerva Singh2,3,*

    Revue Internationale de Géomatique, Vol.33, pp. 427-443, 2024, DOI:10.32604/rig.2024.055752 - 11 October 2024

    Abstract This study examines how socio-economic characteristics predict flood risk in London, England, using machine learning algorithms. The socio-economic variables considered included race, employment, crime and poverty measures. A stacked generalization (SG) model combines random forest (RF), support vector machine (SVM), and XGBoost. Binary classification issues employ RF as the basis model and SVM as the meta-model. In multiclass classification problems, RF and SVM are base models while XGBoost is meta-model. The study utilizes flood risk labels for London areas and census data to train these models. This study found that SVM performs well in binary… More >

  • Open Access

    ARTICLE

    White Matter Lesions in Young-Middle Aged Migraineurs with Patent Foreman Ovale: A Case-Control Study

    Yang Hua#, Jinyu Sun#, Yuxuan Lou, Hao Zhang, Jing Shi*, Wei Sun*

    Congenital Heart Disease, Vol.19, No.3, pp. 279-291, 2024, DOI:10.32604/chd.2024.051190 - 26 July 2024

    Abstract Background: White matter lesion (WML) is common in aging brain and is associated with cognitive impairment and dementia. However, recent studies reported an association between patent foramen ovale (PFO) and WML in migraineurs, especially in young, middle-aged migraineurs. Our retrospective, case-control study aims to describe the clinical characteristics of WML in this population and to explore potential risk factors. Methods: 226 patients with migraine and PFO were consecutively initially screened. Relevant factors were selected by the least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression model. A Nomogram was employed to visualize… More >

  • Open Access

    ARTICLE

    Screen for autophagy-related biomarkers in osteoarthritis based on bioinformatic analysis

    CHAO LIU*

    BIOCELL, Vol.48, No.2, pp. 339-351, 2024, DOI:10.32604/biocell.2023.047044 - 23 February 2024

    Abstract Introduction: Osteoarthritis (OA) is still an important health problem, and understanding its pathological mechanisms is essential for its diagnosis and treatment. There is evidence that autophagy may play a role in OA progression, but the exact mechanism remains unclear. Methods: In this study, we adopted a multi-prong approach to systematically identify the key autophagy-related genes (ARGs) associated with OA. Through weighted gene co-expression network analysis, we initially identified significant gene modules associated with OA. Subsequent differential gene analysis performed on normal and OA specimens. Further analysis later using the MCC algorithm highlighted hub ARGs. These… More >

  • Open Access

    ARTICLE

    Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel

    Qing Ai1,2, Hao Tian2,3,*, Hui Wang1,*, Qing Lang1, Xingchun Huang1, Xinghong Jiang4, Qiang Jing5

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1797-1827, 2024, DOI:10.32604/cmes.2023.045251 - 29 January 2024

    Abstract Structural Health Monitoring (SHM) systems have become a crucial tool for the operational management of long tunnels. For immersed tunnels exposed to both traffic loads and the effects of the marine environment, efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge. This study proposed a model-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel. Firstly, a dynamic predictive model-based anomaly detection method is proposed, which utilizes a rolling time window for modeling to achieve… More >

  • Open Access

    ARTICLE

    A Novel Predictive Model for Edge Computing Resource Scheduling Based on Deep Neural Network

    Ming Gao1,#, Weiwei Cai1,#, Yizhang Jiang1, Wenjun Hu3, Jian Yao2, Pengjiang Qian1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 259-277, 2024, DOI:10.32604/cmes.2023.029015 - 30 December 2023

    Abstract Currently, applications accessing remote computing resources through cloud data centers is the main mode of operation, but this mode of operation greatly increases communication latency and reduces overall quality of service (QoS) and quality of experience (QoE). Edge computing technology extends cloud service functionality to the edge of the mobile network, closer to the task execution end, and can effectively mitigate the communication latency problem. However, the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management, and the booming development of artificial neural networks provides More >

  • Open Access

    ARTICLE

    Statistical Time Series Forecasting Models for Pandemic Prediction

    Ahmed ElShafee1, Walid El-Shafai2,3, Abeer D. Algarni4,*, Naglaa F. Soliman4, Moustafa H. Aly5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 349-374, 2023, DOI:10.32604/csse.2023.037408 - 26 May 2023

    Abstract COVID-19 has significantly impacted the growth prediction of a pandemic, and it is critical in determining how to battle and track the disease progression. In this case, COVID-19 data is a time-series dataset that can be projected using different methodologies. Thus, this work aims to gauge the spread of the outbreak severity over time. Furthermore, data analytics and Machine Learning (ML) techniques are employed to gain a broader understanding of virus infections. We have simulated, adjusted, and fitted several statistical time-series forecasting models, linear ML models, and nonlinear ML models. Examples of these models are… More >

  • Open Access

    ARTICLE

    Statistical Data Mining with Slime Mould Optimization for Intelligent Rainfall Classification

    Ramya Nemani1, G. Jose Moses2, Fayadh Alenezi3, K. Vijaya Kumar4, Seifedine Kadry5,6,7,*, Jungeun Kim8, Keejun Han9

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 919-935, 2023, DOI:10.32604/csse.2023.034213 - 26 May 2023

    Abstract Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance, medicine, science, engineering, and so on. Statistical data mining (SDM) is an interdisciplinary domain that examines huge existing databases to discover patterns and connections from the data. It varies in classical statistics on the size of datasets and on the detail that the data could not primarily be gathered based on some experimental strategy but conversely for other resolves. Thus, this paper introduces an effective statistical Data Mining for Intelligent Rainfall Prediction using Slime… More >

  • Open Access

    ARTICLE

    Tensile Properties and Prediction Model of Recombinant Bamboo at Different Temperatures

    Kunpeng Zhao, Yang Wei*, Si Chen, Kang Zhao, Mingmin Ding

    Journal of Renewable Materials, Vol.11, No.6, pp. 2695-2712, 2023, DOI:10.32604/jrm.2023.025711 - 27 April 2023

    Abstract The destruction of recombinant bamboo depends on many factors, and the complex ambient temperature is an important factor affecting its basic mechanical properties. To investigate the failure mechanism and stress–strain relationship of recombinant bamboo at different temperatures, eighteen tensile specimens of recombinant bamboo were tested. The results showed that with increasing ambient temperature, the typical failure modes of recombinant bamboo were flush fracture, toothed failure, and serrated failure. The ultimate tensile strength, ultimate strain and elastic modulus of recombinant bamboo decreased with increasing temperature, and the ultimate tensile stress decreased from 154.07 to 96.55 MPa, a decrease More > Graphic Abstract

    Tensile Properties and Prediction Model of Recombinant Bamboo at Different Temperatures

  • Open Access

    ARTICLE

    Prediction and Optimization of the Thermal Properties of TiO2/Water Nanofluids in the Framework of a Machine Learning Approach

    Jiachen Li1,2, Wenlong Deng3, Shan Qing1,2,*, Yiqin Liu4, Hao Zhang1,2, Min Zheng1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2181-2200, 2023, DOI:10.32604/fdmp.2023.027299 - 04 April 2023

    Abstract In this study, comparing multiple models of machine learning, a multiple linear regression (MLP), multilayer feed-forward artificial neural network (BP) model, and a radial-basis feed-forward artificial neural network (RBF-BP) model are selected for the optimization of the thermal properties of TiO2/water nanofluids. In particular, the least squares support vector machine (LS-SVM) method and radial basis support vector machine (RB-SVM) method are implemented. First, curve fitting is performed by means of multiple linear regression in order to obtain bivariate correlation functions for thermal conductivity and viscosity of the nanofluid. Then the aforementioned models are used for a More >

  • Open Access

    ARTICLE

    Wind Speed Prediction Using Chicken Swarm Optimization with Deep Learning Model

    R. Surendran1,*, Youseef Alotaibi2, Ahmad F. Subahi3

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3371-3386, 2023, DOI:10.32604/csse.2023.034465 - 03 April 2023

    Abstract High precision and reliable wind speed forecasting have become a challenge for meteorologists. Convective events, namely, strong winds, thunderstorms, and tornadoes, along with large hail, are natural calamities that disturb daily life. For accurate prediction of wind speed and overcoming its uncertainty of change, several prediction approaches have been presented over the last few decades. As wind speed series have higher volatility and nonlinearity, it is urgent to present cutting-edge artificial intelligence (AI) technology. In this aspect, this paper presents an intelligent wind speed prediction using chicken swarm optimization with the hybrid deep learning (IWSP-CSODL)… More >

Displaying 1-10 on page 1 of 34. Per Page