Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Intelligent Estimation of ESR and C in AECs for Buck Converters Using Signal Processing and ML Regression

    Acácio M. R. Amaral1,2,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3825-3859, 2025, DOI:10.32604/cmc.2025.067179 - 23 September 2025

    Abstract Power converters are essential components in modern life, being widely used in industry, automation, transportation, and household appliances. In many critical applications, their failure can lead not only to financial losses due to operational downtime but also to serious risks to human safety. The capacitors forming the output filter, typically aluminum electrolytic capacitors (AECs), are among the most critical and susceptible components in power converters. The electrolyte in AECs often evaporates over time, causing the internal resistance to rise and the capacitance to drop, ultimately leading to component failure. Detecting this fault requires measuring the… More >

  • Open Access

    ARTICLE

    Using Time Series Foundation Models for Few-Shot Remaining Useful Life Prediction of Aircraft Engines

    Ricardo Dintén*, Marta Zorrilla

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 239-265, 2025, DOI:10.32604/cmes.2025.065461 - 31 July 2025

    Abstract Predictive maintenance often involves imbalanced multivariate time series datasets with scarce failure events, posing challenges for model training due to the high dimensionality of the data and the need for domain-specific preprocessing, which frequently leads to the development of large and complex models. Inspired by the success of Large Language Models (LLMs), transformer-based foundation models have been developed for time series (TSFM). These models have been proven to reconstruct time series in a zero-shot manner, being able to capture different patterns that effectively characterize time series. This paper proposes the use of TSFM to generate… More >

  • Open Access

    ARTICLE

    A Bayesian Optimized Stacked Long Short-Term Memory Framework for Real-Time Predictive Condition Monitoring of Heavy-Duty Industrial Motors

    Mudasir Dilawar*, Muhammad Shahbaz

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5091-5114, 2025, DOI:10.32604/cmc.2025.064090 - 19 May 2025

    Abstract In the era of Industry 4.0, condition monitoring has emerged as an effective solution for process industries to optimize their operational efficiency. Condition monitoring helps minimize unplanned downtime, extending equipment lifespan, reducing maintenance costs, and improving production quality and safety. This research focuses on utilizing Bayesian search-based machine learning and deep learning approaches for the condition monitoring of industrial equipment. The study aims to enhance predictive maintenance for industrial equipment by forecasting vibration values based on domain-specific feature engineering. Early prediction of vibration enables proactive interventions to minimize downtime and extend the lifespan of critical… More >

  • Open Access

    ARTICLE

    Leveraging Safe and Secure AI for Predictive Maintenance of Mechanical Devices Using Incremental Learning and Drift Detection

    Prashanth B. S1,*, Manoj Kumar M. V.2,*, Nasser Almuraqab3, Puneetha B. H4

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4979-4998, 2025, DOI:10.32604/cmc.2025.060881 - 19 May 2025

    Abstract Ever since the research in machine learning gained traction in recent years, it has been employed to address challenges in a wide variety of domains, including mechanical devices. Most of the machine learning models are built on the assumption of a static learning environment, but in practical situations, the data generated by the process is dynamic. This evolution of the data is termed concept drift. This research paper presents an approach for predicting mechanical failure in real-time using incremental learning based on the statistically calculated parameters of mechanical equipment. The method proposed here is applicable… More >

  • Open Access

    ARTICLE

    An Explainable Autoencoder-Based Feature Extraction Combined with CNN-LSTM-PSO Model for Improved Predictive Maintenance

    Ishaani Priyadarshini*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 635-659, 2025, DOI:10.32604/cmc.2025.061062 - 26 March 2025

    Abstract Predictive maintenance plays a crucial role in preventing equipment failures and minimizing operational downtime in modern industries. However, traditional predictive maintenance methods often face challenges in adapting to diverse industrial environments and ensuring the transparency and fairness of their predictions. This paper presents a novel predictive maintenance framework that integrates deep learning and optimization techniques while addressing key ethical considerations, such as transparency, fairness, and explainability, in artificial intelligence driven decision-making. The framework employs an Autoencoder for feature reduction, a Convolutional Neural Network for pattern recognition, and a Long Short-Term Memory network for temporal analysis.… More >

  • Open Access

    REVIEW

    Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review

    Md Naeem Hossain1, Md Mustafizur Rahman1,2,*, Devarajan Ramasamy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 951-996, 2024, DOI:10.32604/cmes.2024.056022 - 27 September 2024

    Abstract Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically. Hence, there is a growing demand for advanced fault diagnosis technologies to mitigate the impact of these limitations on unplanned vehicular downtime caused by unanticipated vehicle breakdowns. Due to vehicles’ increasingly complex and autonomous nature, there is a growing urgency to investigate novel diagnosis methodologies for improving safety, reliability, and maintainability. While Artificial Intelligence (AI) has provided a great opportunity in this area, a systematic review of the feasibility and application of AI for Vehicle Fault Diagnosis (VFD)… More > Graphic Abstract

    Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review

  • Open Access

    PROCEEDINGS

    Predictive Maintenance of Alkaline Water Electrolysis System for Hydrogen Production Based on Digital Twin

    Hang Cheng1, Jiawen Fei1, Jianfeng Wen1,*, Shan-Tung Tu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09663

    Abstract Alkaline water electrolysis system for hydrogen production has the characteristics of complex structure, fault coupling and state nonlinearity, coupled with the restriction by many factors such as data acquisition methods and analysis methods. The operation status cannot be fully characterized through current monitoring information. In order to solve the problems in health status assessment in the operation of alkaline water electrolysis system, a digital twin-driven predictive maintenance method is put forward to achieve the real-time monitoring of operation status and prediction of remaining useful life. In the study, a multi-disciplinary simulation model of the alkaline… More >

  • Open Access

    ARTICLE

    An Efficient IIoT-Based Smart Sensor Node for Predictive Maintenance of Induction Motors

    Majida Kazmi1,*, Maria Tabasum Shoaib1,2, Arshad Aziz3, Hashim Raza Khan1,2, Saad Ahmed Qazi1,2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 255-272, 2023, DOI:10.32604/csse.2023.038464 - 26 May 2023

    Abstract Predictive maintenance is a vital aspect of the industrial sector, and the use of Industrial Internet of Things (IIoT) sensor nodes is becoming increasingly popular for detecting motor faults and monitoring motor conditions. An integrated approach for acquiring, processing, and wirelessly transmitting a large amount of data in predictive maintenance applications remains a significant challenge. This study presents an IIoT-based sensor node for industrial motors. The sensor node is designed to acquire vibration data on the radial and axial axes of the motor and utilizes a hybrid approach for efficient data processing via edge and… More >

  • Open Access

    ARTICLE

    A Dynamic Maintenance Strategy for Multi-Component Systems Using a Genetic Algorithm

    Dongyan Shi1,*, Hui Ma1, Chunlong Ma1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1899-1923, 2023, DOI:10.32604/cmes.2022.022444 - 20 September 2022

    Abstract In multi-component systems, the components are dependent, rather than degenerating independently, leading to changes in maintenance schedules. In this situation, this study proposes a grouping dynamic maintenance strategy. Considering the structure of multi-component systems, the maintenance strategy is determined according to the importance of the components. The strategy can minimize the expected depreciation cost of the system and divide the system into optimal groups that meet economic requirements. First, multi-component models are grouped. Then, a failure probability model of multi-component systems is established. The maintenance parameters in each maintenance cycle are updated according to the More > Graphic Abstract

    A Dynamic Maintenance Strategy for Multi-Component Systems Using a Genetic Algorithm

  • Open Access

    ARTICLE

    An Ordinal Multi-Dimensional Classification (OMDC) for Predictive Maintenance

    Pelin Yildirim Taser*

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1499-1516, 2023, DOI:10.32604/csse.2023.028083 - 15 June 2022

    Abstract Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed. Although machine learning techniques have been frequently implemented in this area, the existing studies disregard to the natural order between the target attribute values of the historical sensor data. Thus, these methods cause losing the inherent order of the data that positively affects the prediction performances. To deal with this problem, a novel approach, named Ordinal Multi-dimensional Classification (OMDC), is proposed for estimating the conditions of a hydraulic system's four components by… More >

Displaying 1-10 on page 1 of 13. Per Page