Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (113)
  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for Green Energy Forecasting in Asian Countries

    Tao Yan1, Javed Rashid2,3, Muhammad Shoaib Saleem3,4, Sajjad Ahmad4, Muhammad Faheem5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2685-2708, 2024, DOI:10.32604/cmc.2024.058186 - 18 November 2024

    Abstract Electricity is essential for keeping power networks balanced between supply and demand, especially since it costs a lot to store. The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce. The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand. There is a new deep learning model called the Green-electrical Production Ensemble (GP-Ensemble). It combines three types of neural networks: convolutional neural networks (CNNs), gated recurrent units (GRUs), and… More >

  • Open Access

    REVIEW

    AI-Powered Innovations in High-Tech Research and Development: From Theory to Practice

    Mitra Madanchian1,*, Hamed Taherdoost1,2,3,4

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2133-2159, 2024, DOI:10.32604/cmc.2024.057094 - 18 November 2024

    Abstract This comparative review explores the dynamic and evolving landscape of artificial intelligence (AI)-powered innovations within high-tech research and development (R&D). It delves into both theoretical models and practical applications across a broad range of industries, including biotechnology, automotive, aerospace, and telecommunications. By examining critical advancements in AI algorithms, machine learning, deep learning models, simulations, and predictive analytics, the review underscores the transformative role AI has played in advancing theoretical research and shaping cutting-edge technologies. The review integrates both qualitative and quantitative data derived from academic studies, industry reports, and real-world case studies to showcase the… More >

  • Open Access

    ARTICLE

    Modular System of Cascaded Converters Based on Model Predictive Control

    Chunxue Wen, Yaoquan Wei*, Peng Wang, Jianlin Li, Jinghua Zhou, Qingyun Li

    Energy Engineering, Vol.121, No.11, pp. 3241-3261, 2024, DOI:10.32604/ee.2024.051810 - 21 October 2024

    Abstract A modular system of cascaded converters based on model predictive control (MPC) is proposed to meet the application requirements of multiple voltage levels and electrical isolation in renewable energy generation systems. The system consists of a Buck/Boost + CLLLC cascaded converter as a submodule, which is combined in series and parallel on the input and output sides to achieve direct-current (DC) voltage transformation, bidirectional energy flow, and electrical isolation. The CLLLC converter operates in DC transformer mode in the submodule, while the Buck/Boost converter participates in voltage regulation. This article establishes a suitable mathematical model More >

  • Open Access

    ARTICLE

    Using Machine Learning to Determine the Efficacy of Socio-Economic Indicators as Predictors for Flood Risk in London

    Grace Gau1, Minerva Singh2,3,*

    Revue Internationale de Géomatique, Vol.33, pp. 427-443, 2024, DOI:10.32604/rig.2024.055752 - 11 October 2024

    Abstract This study examines how socio-economic characteristics predict flood risk in London, England, using machine learning algorithms. The socio-economic variables considered included race, employment, crime and poverty measures. A stacked generalization (SG) model combines random forest (RF), support vector machine (SVM), and XGBoost. Binary classification issues employ RF as the basis model and SVM as the meta-model. In multiclass classification problems, RF and SVM are base models while XGBoost is meta-model. The study utilizes flood risk labels for London areas and census data to train these models. This study found that SVM performs well in binary… More >

  • Open Access

    REVIEW

    Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review

    Md Naeem Hossain1, Md Mustafizur Rahman1,2,*, Devarajan Ramasamy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 951-996, 2024, DOI:10.32604/cmes.2024.056022 - 27 September 2024

    Abstract Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically. Hence, there is a growing demand for advanced fault diagnosis technologies to mitigate the impact of these limitations on unplanned vehicular downtime caused by unanticipated vehicle breakdowns. Due to vehicles’ increasingly complex and autonomous nature, there is a growing urgency to investigate novel diagnosis methodologies for improving safety, reliability, and maintainability. While Artificial Intelligence (AI) has provided a great opportunity in this area, a systematic review of the feasibility and application of AI for Vehicle Fault Diagnosis (VFD)… More > Graphic Abstract

    Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review

  • Open Access

    ARTICLE

    Enhancing Safety in Autonomous Vehicle Navigation: An Optimized Path Planning Approach Leveraging Model Predictive Control

    Shih-Lin Lin*, Bo-Chen Lin

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3555-3572, 2024, DOI:10.32604/cmc.2024.055456 - 12 September 2024

    Abstract This paper explores the application of Model Predictive Control (MPC) to enhance safety and efficiency in autonomous vehicle (AV) navigation through optimized path planning. The evolution of AV technology has progressed rapidly, moving from basic driver-assistance systems (Level 1) to fully autonomous capabilities (Level 5). Central to this advancement are two key functionalities: Lane-Change Maneuvers (LCM) and Adaptive Cruise Control (ACC). In this study, a detailed simulation environment is created to replicate the road network between Nantun and Wuri on National Freeway No. 1 in Taiwan. The MPC controller is deployed to optimize vehicle trajectories,… More >

  • Open Access

    ARTICLE

    White Matter Lesions in Young-Middle Aged Migraineurs with Patent Foreman Ovale: A Case-Control Study

    Yang Hua#, Jinyu Sun#, Yuxuan Lou, Hao Zhang, Jing Shi*, Wei Sun*

    Congenital Heart Disease, Vol.19, No.3, pp. 279-291, 2024, DOI:10.32604/chd.2024.051190 - 26 July 2024

    Abstract Background: White matter lesion (WML) is common in aging brain and is associated with cognitive impairment and dementia. However, recent studies reported an association between patent foramen ovale (PFO) and WML in migraineurs, especially in young, middle-aged migraineurs. Our retrospective, case-control study aims to describe the clinical characteristics of WML in this population and to explore potential risk factors. Methods: 226 patients with migraine and PFO were consecutively initially screened. Relevant factors were selected by the least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression model. A Nomogram was employed to visualize… More >

  • Open Access

    ARTICLE

    THAPE: A Tunable Hybrid Associative Predictive Engine Approach for Enhancing Rule Interpretability in Association Rule Learning for the Retail Sector

    Monerah Alawadh*, Ahmed Barnawi

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4995-5015, 2024, DOI:10.32604/cmc.2024.048762 - 20 June 2024

    Abstract Association rule learning (ARL) is a widely used technique for discovering relationships within datasets. However, it often generates excessive irrelevant or ambiguous rules. Therefore, post-processing is crucial not only for removing irrelevant or redundant rules but also for uncovering hidden associations that impact other factors. Recently, several post-processing methods have been proposed, each with its own strengths and weaknesses. In this paper, we propose THAPE (Tunable Hybrid Associative Predictive Engine), which combines descriptive and predictive techniques. By leveraging both techniques, our aim is to enhance the quality of analyzing generated rules. This includes removing irrelevant… More >

  • Open Access

    ARTICLE

    Research on the Control Strategy of Micro Wind-Hydrogen Coupled System Based on Wind Power Prediction and Hydrogen Storage System Charging/Discharging Regulation

    Yuanjun Dai, Haonan Li, Baohua Li*

    Energy Engineering, Vol.121, No.6, pp. 1607-1636, 2024, DOI:10.32604/ee.2024.047255 - 21 May 2024

    Abstract This paper addresses the micro wind-hydrogen coupled system, aiming to improve the power tracking capability of micro wind farms, the regulation capability of hydrogen storage systems, and to mitigate the volatility of wind power generation. A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction, the hydrogen storage state division interval, and the daily scheduled output of wind power generation. The control strategy maximizes the power tracking capability, the regulation capability of the hydrogen storage system, and the fluctuation of the joint output of the wind-hydrogen… More >

  • Open Access

    ARTICLE

    Proactive Caching at the Wireless Edge: A Novel Predictive User Popularity-Aware Approach

    Yunye Wan1, Peng Chen2, Yunni Xia1,*, Yong Ma3, Dongge Zhu4, Xu Wang5, Hui Liu6, Weiling Li7, Xianhua Niu2, Lei Xu8, Yumin Dong9

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1997-2017, 2024, DOI:10.32604/cmes.2024.048723 - 20 May 2024

    Abstract Mobile Edge Computing (MEC) is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible. In an MEC environment, servers are deployed closer to mobile terminals to exploit storage infrastructure, improve content delivery efficiency, and enhance user experience. However, due to the limited capacity of edge servers, it remains a significant challenge to meet the changing, time-varying, and customized needs for highly diversified content of users. Recently, techniques for caching content at the edge are becoming popular for addressing the above challenges. It is capable of filling… More >

Displaying 1-10 on page 1 of 113. Per Page