Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Pandemic Analysis and Prediction of COVID-19 Using Gaussian Doubling Times

    Saleh Albahli1,*, Farman Hassan2, Ali Javed2,3, Aun Irtaza2,4

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 833-849, 2022, DOI:10.32604/cmc.2022.024267 - 24 February 2022

    Abstract COVID-19 has become a pandemic, with cases all over the world, with widespread disruption in some countries, such as Italy, US, India, South Korea, and Japan. Early and reliable detection of COVID-19 is mandatory to control the spread of infection. Moreover, prediction of COVID-19 spread in near future is also crucial to better plan for the disease control. For this purpose, we proposed a robust framework for the analysis, prediction, and detection of COVID-19. We make reliable estimates on key pandemic parameters and make predictions on the point of inflection and possible washout time for… More >

  • Open Access

    ARTICLE

    Prediction of Covid-19 Based on Chest X-Ray Images Using Deep Learning with CNN

    Anika Tahsin Meem1, Mohammad Monirujjaman Khan1,*, Mehedi Masud2, Sultan Aljahdali2

    Computer Systems Science and Engineering, Vol.41, No.3, pp. 1223-1240, 2022, DOI:10.32604/csse.2022.021563 - 10 November 2021

    Abstract The COVID-19 pandemic has caused trouble in people’s daily lives and ruined several economies around the world, killing millions of people thus far. It is essential to screen the affected patients in a timely and cost-effective manner in order to fight this disease. This paper presents the prediction of COVID-19 with Chest X-Ray images, and the implementation of an image processing system operated using deep learning and neural networks. In this paper, a Deep Learning, Machine Learning, and Convolutional Neural Network-based approach for predicting Covid-19 positive and normal patients using Chest X-Ray pictures is proposed.… More >

  • Open Access

    ARTICLE

    Prediction of COVID-19 Transmission in the United States Using Google Search Trends

    Meshrif Alruily1, Mohamed Ezz1,2, Ayman Mohamed Mostafa1,3, Nacim Yanes1,4, Mostafa Abbas5, Yasser El-Manzalawy5,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1751-1768, 2022, DOI:10.32604/cmc.2022.020714 - 03 November 2021

    Abstract Accurate forecasting of emerging infectious diseases can guide public health officials in making appropriate decisions related to the allocation of public health resources. Due to the exponential spread of the COVID-19 infection worldwide, several computational models for forecasting the transmission and mortality rates of COVID-19 have been proposed in the literature. To accelerate scientific and public health insights into the spread and impact of COVID-19, Google released the Google COVID-19 search trends symptoms open-access dataset. Our objective is to develop 7 and 14-day-ahead forecasting models of COVID-19 transmission and mortality in the US using the… More >

  • Open Access

    ARTICLE

    Supervised Machine Learning-Based Prediction of COVID-19

    Atta-ur-Rahman1, Kiran Sultan3, Iftikhar Naseer4, Rizwan Majeed5, Dhiaa Musleh1, Mohammed Abdul Salam Gollapalli2, Sghaier Chabani2, Nehad Ibrahim1, Shahan Yamin Siddiqui6,7, Muhammad Adnan Khan8,*

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 21-34, 2021, DOI:10.32604/cmc.2021.013453 - 04 June 2021

    Abstract COVID-19 turned out to be an infectious and life-threatening viral disease, and its swift and overwhelming spread has become one of the greatest challenges for the world. As yet, no satisfactory vaccine or medication has been developed that could guarantee its mitigation, though several efforts and trials are underway. Countries around the globe are striving to overcome the COVID-19 spread and while they are finding out ways for early detection and timely treatment. In this regard, healthcare experts, researchers and scientists have delved into the investigation of existing as well as new technologies. The situation… More >

  • Open Access

    ARTICLE

    Prediction of COVID-19 Pandemic Spread in Kingdom of Saudi Arabia

    Abdulaziz Attaallah1, Sabita Khatri2, Mohd Nadeem2, Syed Anas Ansar2, Abhishek Kumar Pandey2, Alka Agrawal2,*

    Computer Systems Science and Engineering, Vol.37, No.3, pp. 313-329, 2021, DOI:10.32604/csse.2021.014933 - 08 March 2021

    Abstract A significant increase in the number of coronavirus cases can easily be noticed in most of the countries around the world. Inspite of the consistent preventive initiatives being taken to contain the spread of this virus, the unabated increase in the cases is both alarming and intriguing. The role of mathematical models in predicting and estimating the spread of the virus, and identifying various preventive factors dependencies has been found important and effective in most of the previous pandemics like Severe Acute Respiratory Syndrome (SARS) 2003. In this research work, authors have proposed the Susceptible-Infectected-Removed… More >

  • Open Access

    ARTICLE

    Prediction Models for COVID-19 Integrating Age Groups, Gender, and Underlying Conditions

    Imran Ashraf1, Waleed S. Alnumay2, Rashid Ali3, Soojung Hur1, Ali Kashif Bashir4, Yousaf Bin Zikria1,*

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3009-3044, 2021, DOI:10.32604/cmc.2021.015140 - 01 March 2021

    Abstract The COVID-19 pandemic has caused hundreds of thousands of deaths, millions of infections worldwide, and the loss of trillions of dollars for many large economies. It poses a grave threat to the human population with an excessive number of patients constituting an unprecedented challenge with which health systems have to cope. Researchers from many domains have devised diverse approaches for the timely diagnosis of COVID-19 to facilitate medical responses. In the same vein, a wide variety of research studies have investigated underlying medical conditions for indicators suggesting the severity and mortality of, and role of… More >

  • Open Access

    ARTICLE

    Optimized Deep Learning-Inspired Model for the Diagnosis and Prediction of COVID-19

    Sally M. Elghamrawy1, Aboul Ella Hassnien2,*, Vaclav Snasel3

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2353-2371, 2021, DOI:10.32604/cmc.2021.014767 - 05 February 2021

    Abstract Detecting COVID-19 cases as early as possible became a critical issue that must be addressed to avoid the pandemic’s additional spread and early provide the appropriate treatment to the affected patients. This study aimed to develop a COVID-19 diagnosis and prediction (AIMDP) model that could identify patients with COVID-19 and distinguish it from other viral pneumonia signs detected in chest computed tomography (CT) scans. The proposed system uses convolutional neural networks (CNNs) as a deep learning technology to process hundreds of CT chest scan images and speeds up COVID-19 case prediction to facilitate its containment.… More >

  • Open Access

    ARTICLE

    Artificial Neural Networks for Prediction of COVID-19 in Saudi Arabia

    Nawaf N. Hamadneh1, Waqar A. Khan2, Waqar Ashraf3, Samer H. Atawneh4, Ilyas Khan5,*, Bandar N. Hamadneh6

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2787-2796, 2021, DOI:10.32604/cmc.2021.013228 - 28 December 2020

    Abstract In this study, we have proposed an artificial neural network (ANN) model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17, 2020. The proposed model is based on the existing data (training data) published in the Saudi Arabia Coronavirus disease (COVID-19) situation—Demographics. The Prey-Predator algorithm is employed for the training. Multilayer perceptron neural network (MLPNN) is used in this study. To improve the performance of MLPNN, we determined the parameters of MLPNN using the prey-predator algorithm (PPA). The proposed model is called the MLPNN–PPA. More >

  • Open Access

    ARTICLE

    Prediction of COVID-19 Cases Using Machine Learning for Effective Public Health Management

    Fahad Ahmad1,*, Saleh N. Almuayqil2, Mamoona Humayun2, Shahid Naseem3, Wasim Ahmad Khan4, Kashaf Junaid5

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2265-2282, 2021, DOI:10.32604/cmc.2021.013067 - 28 December 2020

    Abstract COVID-19 is a pandemic that has affected nearly every country in the world. At present, sustainable development in the area of public health is considered vital to securing a promising and prosperous future for humans. However, widespread diseases, such as COVID-19, create numerous challenges to this goal, and some of those challenges are not yet defined. In this study, a Shallow Single-Layer Perceptron Neural Network (SSLPNN) and Gaussian Process Regression (GPR) model were used for the classification and prediction of confirmed COVID-19 cases in five geographically distributed regions of Asia with diverse settings and environmental… More >

  • Open Access

    ARTICLE

    Prediction of COVID-19 Confirmed Cases Using Gradient Boosting Regression Method

    Abdu Gumaei1,2,*, Mabrook Al-Rakhami1, Mohamad Mahmoud Al Rahhal3, Fahad Raddah H. Albogamy3, Eslam Al Maghayreh3, Hussain AlSalman1

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 315-329, 2021, DOI:10.32604/cmc.2020.012045 - 30 October 2020

    Abstract The fast spread of coronavirus disease (COVID-19) caused by SARSCoV-2 has become a pandemic and a serious threat to the world. As of May 30, 2020, this disease had infected more than 6 million people globally, with hundreds of thousands of deaths. Therefore, there is an urgent need to predict confirmed cases so as to analyze the impact of COVID-19 and practice readiness in healthcare systems. This study uses gradient boosting regression (GBR) to build a trained model to predict the daily total confirmed cases of COVID-19. The GBR method can minimize the loss function More >

Displaying 1-10 on page 1 of 10. Per Page