Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (95)
  • Open Access

    ARTICLE

    Optical Based Gradient-Weighted Class Activation Mapping and Transfer Learning Integrated Pneumonia Prediction Model

    Chia-Wei Jan1, Yu-Jhih Chiu1, Kuan-Lin Chen2, Ting-Chun Yao3, Ping-Huan Kuo1,4,*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2989-3010, 2023, DOI:10.32604/csse.2023.042078 - 09 November 2023

    Abstract Pneumonia is a common lung disease that is more prone to affect the elderly and those with weaker respiratory systems. However, hospital medical resources are limited, and sometimes the workload of physicians is too high, which can affect their judgment. Therefore, a good medical assistance system is of great significance for improving the quality of medical care. This study proposed an integrated system by combining transfer learning and gradient-weighted class activation mapping (Grad-CAM). Pneumonia is a common lung disease that is generally diagnosed using X-rays. However, in areas with limited medical resources, a shortage of… More >

  • Open Access

    ARTICLE

    Novel defined N7-methylguanosine modification-related lncRNAs for predicting the prognosis of laryngeal squamous cell carcinoma

    ZHAOXU YAO*, HAIBIN MA, LIN LIU, QIAN ZHAO, LONGCHAO QIN, XUEYAN REN, CHUANJUN WU, KAILI SUN

    BIOCELL, Vol.47, No.9, pp. 1965-1975, 2023, DOI:10.32604/biocell.2023.030796 - 28 September 2023

    Abstract Objective: Through integrated bioinformatics analysis, the goal of this work was to find new, characterised N7-methylguanosine modification-related long non-coding RNAs (m7G-lncRNAs) that might be used to predict the prognosis of laryngeal squamous cell carcinoma (LSCC). Methods: The clinical data and LSCC gene expression data for the current investigation were initially retrieved from the TCGA database & sanitised. Then, using co-expression analysis of m7G-associated mRNAs & lncRNAs & differential expression analysis (DEA) among LSCC & normal sample categories, we discovered lncRNAs that were connected to m7G. The prognosis prediction model was built for the training category… More >

  • Open Access

    ARTICLE

    Rockburst Intensity Grade Prediction Model Based on Batch Gradient Descent and Multi-Scale Residual Deep Neural Network

    Yu Zhang1,2,3, Mingkui Zhang1,2,*, Jitao Li1,2, Guangshu Chen1,2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1987-2006, 2023, DOI:10.32604/csse.2023.040381 - 28 July 2023

    Abstract Rockburst is a phenomenon in which free surfaces are formed during excavation, which subsequently causes the sudden release of energy in the construction of mines and tunnels. Light rockburst only peels off rock slices without ejection, while severe rockburst causes casualties and property loss. The frequency and degree of rockburst damage increases with the excavation depth. Moreover, rockburst is the leading engineering geological hazard in the excavation process, and thus the prediction of its intensity grade is of great significance to the development of geotechnical engineering. Therefore, the prediction of rockburst intensity grade is one… More >

  • Open Access

    ARTICLE

    Cloud Resource Integrated Prediction Model Based on Variational Modal Decomposition-Permutation Entropy and LSTM

    Xinfei Li2, Xiaolan Xie1,2,*, Yigang Tang2, Qiang Guo1,2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2707-2724, 2023, DOI:10.32604/csse.2023.037351 - 28 July 2023

    Abstract Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters. We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition (VMD)-Permutation entropy (PE) and long short-term memory (LSTM) neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data. The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components, which solves the signal decomposition algorithm’s end-effect and modal confusion problems.… More >

  • Open Access

    ARTICLE

    Development of Wet Shotcrete with Solid Waste as Aggregate: Strength Optimization and Mix Proportion Design

    Yafei Hu1,2, Keqing Li1,2, Bo Zhang1,2, Bin Han1,2,*

    Journal of Renewable Materials, Vol.11, No.9, pp. 3463-3484, 2023, DOI:10.32604/jrm.2023.027532 - 20 July 2023

    Abstract The super-fine particle size of tailings is its drawback as a recycled resource, which is reflected in the low strength of the new construction and industrial materials formed when it is mixed with cement and other cementitious materials. Therefore, it is crucial to study the effect of tailings particle size and cementitious material on the strength of tailings wet shotcrete (TWSC) and to investigate the optimal mix proportion. In this paper, a multivariate nonlinear response model was constructed by conducting central composite experiments to investigate the effect of different factors on the strength of TWSC.… More >

  • Open Access

    ARTICLE

    Effect of Freeze-Thaw Cycles on Chloride Transportation in Concrete: Prediction Model and Experiment

    Yongdong Yan*, Youdong Si, Chunhua Lu, Keke Wu

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 225-238, 2023, DOI:10.32604/sdhm.2022.022629 - 25 June 2023

    Abstract This research aims to investigate the effect of frost damage on chloride transportation mechanism in ordinary and fiber concrete with both theoretical and experimental methods. The proposed theoretical model takes into account the varying damage levels caused by concrete cover depth and freeze-thaw cycles, which are the two primary parameters affecting the expression of the chloride diffusion coefficient. In the experiment, three types of concrete were prepared: ordinary Portland concrete (OPC), polypropylene fiber concrete (PFC), and steel fiber concrete (SFC). These were then immersed in NaCl solution for 120 days after undergoing 10, 25, and… More >

  • Open Access

    ARTICLE

    Forecasting Energy Consumption Using a Novel Hybrid Dipper Throated Optimization and Stochastic Fractal Search Algorithm

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2, Amel Ali Alhussan1,*, Marwa M. Eid3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2117-2132, 2023, DOI:10.32604/iasc.2023.038811 - 21 June 2023

    Abstract The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments. Meanwhile, the accurate prediction can be realized using the recent advances in machine learning and predictive models. This research proposes a novel approach for energy consumption forecasting based on a new optimization algorithm and a new forecasting model consisting of a set of long short-term memory (LSTM) units. The proposed optimization algorithm is used to optimize the parameters of the LSTM-based model to boost its forecasting accuracy. This optimization algorithm is based on the recently emerged… More >

  • Open Access

    ARTICLE

    Genetic algorithm-optimized backpropagation neural network establishes a diagnostic prediction model for diabetic nephropathy: Combined machine learning and experimental validation in mice

    WEI LIANG1,2,*, ZONGWEI ZHANG1,2, KEJU YANG1,2,3, HONGTU HU1,2, QIANG LUO1,2, ANKANG YANG1,2, LI CHANG4, YUANYUAN ZENG4

    BIOCELL, Vol.47, No.6, pp. 1253-1263, 2023, DOI:10.32604/biocell.2023.027373 - 19 May 2023

    Abstract Background: Diabetic nephropathy (DN) is the most common complication of type 2 diabetes mellitus and the main cause of end-stage renal disease worldwide. Diagnostic biomarkers may allow early diagnosis and treatment of DN to reduce the prevalence and delay the development of DN. Kidney biopsy is the gold standard for diagnosing DN; however, its invasive character is its primary limitation. The machine learning approach provides a non-invasive and specific criterion for diagnosing DN, although traditional machine learning algorithms need to be improved to enhance diagnostic performance. Methods: We applied high-throughput RNA sequencing to obtain the genes… More >

  • Open Access

    ARTICLE

    Prediction Model of Drilling Costs for Ultra-Deep Wells Based on GA-BP Neural Network

    Wenhua Xu1,3, Yuming Zhu2, Yingrong Wei2, Ya Su2, Yan Xu1,3, Hui Ji1, Dehua Liu1,3,*

    Energy Engineering, Vol.120, No.7, pp. 1701-1715, 2023, DOI:10.32604/ee.2023.027703 - 04 May 2023

    Abstract Drilling costs of ultra-deep well is the significant part of development investment, and accurate prediction of drilling costs plays an important role in reasonable budgeting and overall control of development cost. In order to improve the prediction accuracy of ultra-deep well drilling costs, the item and the dominant factors of drilling costs in Tarim oilfield are analyzed. Then, those factors of drilling costs are separated into categorical variables and numerous variables. Finally, a BP neural network model with drilling costs as the output is established, and hyper-parameters (initial weights and bias) of the BP neural More >

  • Open Access

    ARTICLE

    Machine Learning Prediction Models of Optimal Time for Aortic Valve Replacement in Asymptomatic Patients

    Salah Alzghoul1,*, Othman Smadi1, Ali Al Bataineh2, Mamon Hatmal3, Ahmad Alamm4

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 455-470, 2023, DOI:10.32604/iasc.2023.038338 - 29 April 2023

    Abstract Currently, the decision of aortic valve replacement surgery time for asymptomatic patients with moderate-to-severe aortic stenosis (AS) is made by healthcare professionals based on the patient’s clinical biometric records. A delay in surgical aortic valve replacement (SAVR) can potentially affect patients’ quality of life. By using ML algorithms, this study aims to predict the optimal SAVR timing and determine the enhancement in moderate-to-severe AS patient survival following surgery. This study represents a novel approach that has the potential to improve decision-making and, ultimately, improve patient outcomes. We analyze data from 176 patients with moderate-to-severe aortic… More >

Displaying 21-30 on page 3 of 95. Per Page