Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (95)
  • Open Access

    ARTICLE

    Multipoint Deformation Prediction Model Based on Clustering Partition of Extra High-Arch Dams

    Bin Ou1,2,3,4, Haoquan Chi1,3, Xu’an Qian1,3, Shuyan Fu1,3, Zhirui Miao1,3, Dingzhu Zhao1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.074757 - 29 January 2026

    Abstract Deformation prediction for extra-high arch dams is highly important for ensuring their safe operation. To address the challenges of complex monitoring data, the uneven spatial distribution of deformation, and the construction and optimization of a prediction model for deformation prediction, a multipoint ultrahigh arch dam deformation prediction model, namely, the CEEMDAN-KPCA-GSWOA-KELM, which is based on a clustering partition, is proposed. First, the monitoring data are preprocessed via variational mode decomposition (VMD) and wavelet denoising (WT), which effectively filters out noise and improves the signal-to-noise ratio of the data, providing high-quality input data for subsequent prediction… More > Graphic Abstract

    Multipoint Deformation Prediction Model Based on Clustering Partition of Extra High-Arch Dams

  • Open Access

    ARTICLE

    Machine Learning Models for Predicting Smoking-Related Health Decline and Disease Risk

    Vaskar Chakma1,*, Md Jaheid Hasan Nerab1, Abdur Rouf1, Abu Sayed2, Hossem Md Saim3, Md. Nournabi Khan3

    Journal of Intelligent Medicine and Healthcare, Vol.4, pp. 1-35, 2026, DOI:10.32604/jimh.2026.074347 - 23 January 2026

    Abstract Smoking continues to be a major preventable cause of death worldwide, affecting millions through damage to the heart, metabolism, liver, and kidneys. However, current medical screening methods often miss the early warning signs of smoking-related health problems, leading to late-stage diagnoses when treatment options become limited. This study presents a systematic comparative evaluation of machine learning approaches for smoking-related health risk assessment, emphasizing clinical interpretability and practical deployment over algorithmic innovation. We analyzed health screening data from 55,691 individuals, examining various health indicators including body measurements, blood tests, and demographic information. We tested three advanced… More >

  • Open Access

    ARTICLE

    Prediction and Validation of Mechanical Properties of Areca catechu/Tamarindus indica Fruit Fiber with Nano Coconut Shell Powder Reinforced Hybrid Composites

    Jeyapaul Angel Ida Chellam1, Bright Brailson Mansingh2, Daniel Stalin Alex3, Joseph Selvi Binoj4,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 773-794, 2025, DOI:10.32604/jpm.2025.069295 - 30 September 2025

    Abstract Machine learning models can predict material properties quickly and accurately at a low computational cost. This study generated novel hybridized nanocomposites with unsaturated polyester resin as the matrix and Areca fruit husk fiber (AFHF), tamarind fruit fiber (TFF), and nano-sized coconut shell powder (NCSP). It is challenging to determine the optimal proportion of raw materials in this composite to achieve maximum mechanical properties. This task was accomplished with the help of ML techniques in this study. The tensile strength of the hybridized nanocomposite was increased by 134.06% compared to the neat unsaturated polyester resin at… More >

  • Open Access

    ARTICLE

    Deployable and Accurate Time Series Prediction Model for Earth-Retaining Wall Deformation Monitoring

    Seunghwan Seo1,2,*, Moonkyung Chung1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2893-2922, 2025, DOI:10.32604/cmes.2025.069668 - 30 September 2025

    Abstract Excavation-induced deformations of earth-retaining walls (ERWs) can critically affect the safety of surrounding structures, highlighting the need for reliable prediction models to support timely decision-making during construction. This study utilizes traditional statistical ARIMA (Auto-Regressive Integrated Moving Average) and deep learning-based LSTM (Long Short-Term Memory) models to predict earth-retaining walls deformation using inclinometer data from excavation sites and compares the predictive performance of both models. The ARIMA model demonstrates strengths in analyzing linear patterns in time-series data as it progresses over time, whereas LSTM exhibits superior capabilities in capturing complex non-linear patterns and long-term dependencies within… More > Graphic Abstract

    Deployable and Accurate Time Series Prediction Model for Earth-Retaining Wall Deformation Monitoring

  • Open Access

    REVIEW

    A Review of Pressure Drop Characteristics and Optimization Measures of Two-Phase Flow with Low Boiling Point Working Fluids in Microchannels

    Zongyu Jie1,2, Chao Dang1,2,*, Qingliang Meng 3,4

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1053-1089, 2025, DOI:10.32604/fhmt.2025.066792 - 29 August 2025

    Abstract With the increasing miniaturization of systems and surging demand for power density, accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers. Pressure drop, a critical hydraulic characteristic, serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels. This paper reviews the characteristics, prediction models, and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels. It systematically analyzes key influencing factors such as fluid physical properties, operating conditions, channel… More >

  • Open Access

    ARTICLE

    Health Monitoring and Maintenance of Urban Road Infrastructure Using Temporal Convolutional Networks with Adaptive Activation

    Zongqi Li1, Hongwei Zhao2,*, Jianyong Guo2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 345-357, 2025, DOI:10.32604/cmes.2025.066175 - 31 July 2025

    Abstract Monitoring the condition of road infrastructure is crucial for maintaining its structural integrity and ensuring safe transportation. This study proposes a deep learning framework based on Temporal Convolutional Networks (TCN) integrated with Adaptive Parametric Rectified Linear Unit (APReLU) to predict future road subbase strain trends. Our model leverages time-series strain data collected from embedded triaxial sensors within a national highway, spanning August 2021 to June 2022, to forecast strain dynamics critical for proactive maintenance planning. The TCN-APReLU architecture combines dilated causal convolutions to capture long-term dependencies and APReLU activation functions to adaptively model nonlinear strain More >

  • Open Access

    ARTICLE

    A NAS-Based Risk Prediction Model and Interpretable System for Amyloidosis

    Chen Wang1,2, Tiezheng Guo1, Qingwen Yang1, Yanyi Liu1, Jiawei Tang1, Yingyou Wen1,2,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5561-5574, 2025, DOI:10.32604/cmc.2025.063676 - 19 May 2025

    Abstract Primary light chain amyloidosis is a rare hematologic disease with multi-organ involvement. Nearly one-third of patients with amyloidosis experience five or more consultations before diagnosis, which may lead to a poor prognosis due to delayed diagnosis. Early risk prediction based on artificial intelligence is valuable for clinical diagnosis and treatment of amyloidosis. For this disease, we propose an Evolutionary Neural Architecture Searching (ENAS) based risk prediction model, which achieves high-precision early risk prediction using physical examination data as a reference factor. To further enhance the value of clinic application, we designed a natural language-based interpretable… More >

  • Open Access

    ARTICLE

    A Study on the Inter-Pretability of Network Attack Prediction Models Based on Light Gradient Boosting Machine (LGBM) and SHapley Additive exPlanations (SHAP)

    Shuqin Zhang1, Zihao Wang1,*, Xinyu Su2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5781-5809, 2025, DOI:10.32604/cmc.2025.062080 - 19 May 2025

    Abstract The methods of network attacks have become increasingly sophisticated, rendering traditional cybersecurity defense mechanisms insufficient to address novel and complex threats effectively. In recent years, artificial intelligence has achieved significant progress in the field of network security. However, many challenges and issues remain, particularly regarding the interpretability of deep learning and ensemble learning algorithms. To address the challenge of enhancing the interpretability of network attack prediction models, this paper proposes a method that combines Light Gradient Boosting Machine (LGBM) and SHapley Additive exPlanations (SHAP). LGBM is employed to model anomalous fluctuations in various network indicators,… More >

  • Open Access

    ARTICLE

    A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation

    Hamza Murad Khan1, Anwar Khan1,*, Santos Gracia Villar2,3,4, Luis Alonso Dzul Lopez2,5,6, Abdulaziz Almaleh7, Abdullah M. Al-Qahtani8

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3369-3388, 2025, DOI:10.32604/cmc.2025.060474 - 16 April 2025

    Abstract Traffic forecasting with high precision aids Intelligent Transport Systems (ITS) in formulating and optimizing traffic management strategies. The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity. To address this problem, this paper uses the Tree-structured Parzen Estimator (TPE) to tune the hyperparameters of the Long Short-term Memory (LSTM) deep learning framework. The Tree-structured Parzen Estimator (TPE) uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples. This ensures fast convergence in… More >

  • Open Access

    ARTICLE

    Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight

    Iman S. Al-Mahdi1, Saad M. Darwish1,*, Magda M. Madbouly2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 875-909, 2025, DOI:10.32604/cmes.2025.061623 - 11 April 2025

    Abstract Heart disease prediction is a critical issue in healthcare, where accurate early diagnosis can save lives and reduce healthcare costs. The problem is inherently complex due to the high dimensionality of medical data, irrelevant or redundant features, and the variability in risk factors such as age, lifestyle, and medical history. These challenges often lead to inefficient and less accurate models. Traditional prediction methodologies face limitations in effectively handling large feature sets and optimizing classification performance, which can result in overfitting poor generalization, and high computational cost. This work proposes a novel classification model for heart… More >

Displaying 1-10 on page 1 of 95. Per Page