Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (686)
  • Open Access

    ARTICLE

    Clinical implication of naive and memory T cells in locally advanced cervical cancer: A proxy for tumor biology and short-term response prediction

    YUTING WANG1,2,3, PEIWEN FAN1,2,3, YANING FENG1,2,3, XUAN YAO4, YANCHUN PENG4, RUOZHENG WANG1,2,3,*

    BIOCELL, Vol.47, No.6, pp. 1365-1375, 2023, DOI:10.32604/biocell.2023.027201

    Abstract Background: This study was designed to investigate the feasibility of tumor-infiltrating immune cells with different phenotypic characteristics for predicting short-term clinical responses in patients with locally advanced cervical cancer (LACC). Methods: Thirty-four patients who received concurrent chemoradiotherapy and twenty-one patients who merely underwent radiotherapy were enrolled in this study. We retrospectively analyzed the T cell markers (i.e., CD3, CD4, CD8), memory markers (i.e., CD45, CCR7), and differentiation markers (i.e., CD27) in the peripheral blood and tumor tissues of patients with LACC before treatment based on flow cytometry. We also analyzed the relationship of T cell subsets between peripheral blood and… More >

  • Open Access

    ARTICLE

    Genetic algorithm-optimized backpropagation neural network establishes a diagnostic prediction model for diabetic nephropathy: Combined machine learning and experimental validation in mice

    WEI LIANG1,2,*, ZONGWEI ZHANG1,2, KEJU YANG1,2,3, HONGTU HU1,2, QIANG LUO1,2, ANKANG YANG1,2, LI CHANG4, YUANYUAN ZENG4

    BIOCELL, Vol.47, No.6, pp. 1253-1263, 2023, DOI:10.32604/biocell.2023.027373

    Abstract Background: Diabetic nephropathy (DN) is the most common complication of type 2 diabetes mellitus and the main cause of end-stage renal disease worldwide. Diagnostic biomarkers may allow early diagnosis and treatment of DN to reduce the prevalence and delay the development of DN. Kidney biopsy is the gold standard for diagnosing DN; however, its invasive character is its primary limitation. The machine learning approach provides a non-invasive and specific criterion for diagnosing DN, although traditional machine learning algorithms need to be improved to enhance diagnostic performance. Methods: We applied high-throughput RNA sequencing to obtain the genes related to DN tubular… More >

  • Open Access

    ARTICLE

    Performance Prediction of an Optimized Centrifugal Pump with High Efficiency

    Yuqin Wang1,2,3,*, Luxiang Zhou3, Mengle Han1, Lixiang Shen1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2215-2228, 2023, DOI:10.32604/fdmp.2023.027188

    Abstract The main structural parameters of the IR100-80-100A type chemical centrifugal pump have been optimized by means of an orthogonal test approach. The centrifugal pump has been modeled using the CFturbo software, and 16 sets of orthogonal-test schemes have been defined on the basis of 4 parameters, namely, the blade number, blade outlet angle, impeller outlet diameter, and impeller outlet width. Such analysis has been used to determine the influence of each index parameter on the pump working efficiency and identify a set of optimal combinations of such parameters. The internal flow field in the centrifugal pump has been simulated by… More > Graphic Abstract

    Performance Prediction of an Optimized Centrifugal Pump with High Efficiency

  • Open Access

    ARTICLE

    Prediction Model of Drilling Costs for Ultra-Deep Wells Based on GA-BP Neural Network

    Wenhua Xu1,3, Yuming Zhu2, Yingrong Wei2, Ya Su2, Yan Xu1,3, Hui Ji1, Dehua Liu1,3,*

    Energy Engineering, Vol.120, No.7, pp. 1701-1715, 2023, DOI:10.32604/ee.2023.027703

    Abstract Drilling costs of ultra-deep well is the significant part of development investment, and accurate prediction of drilling costs plays an important role in reasonable budgeting and overall control of development cost. In order to improve the prediction accuracy of ultra-deep well drilling costs, the item and the dominant factors of drilling costs in Tarim oilfield are analyzed. Then, those factors of drilling costs are separated into categorical variables and numerous variables. Finally, a BP neural network model with drilling costs as the output is established, and hyper-parameters (initial weights and bias) of the BP neural network is optimized by genetic… More >

  • Open Access

    ARTICLE

    Short-Term Prediction of Photovoltaic Power Generation Based on LMD Permutation Entropy and Singular Spectrum Analysis

    Wenchao Ma*

    Energy Engineering, Vol.120, No.7, pp. 1685-1699, 2023, DOI:10.32604/ee.2023.025404

    Abstract The power output state of photovoltaic power generation is affected by the earth's rotation and solar radiation intensity. On the one hand, its output sequence has daily periodicity; on the other hand, it has discrete randomness. With the development of new energy economy, the proportion of photovoltaic energy increased accordingly. In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation, this paper proposes the short-term prediction of photovoltaic power generation based on the improved multi-scale permutation entropy, local mean decomposition and singular spectrum analysis algorithm.… More >

  • Open Access

    ARTICLE

    Machine Learning Prediction Models of Optimal Time for Aortic Valve Replacement in Asymptomatic Patients

    Salah Alzghoul1,*, Othman Smadi1, Ali Al Bataineh2, Mamon Hatmal3, Ahmad Alamm4

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 455-470, 2023, DOI:10.32604/iasc.2023.038338

    Abstract Currently, the decision of aortic valve replacement surgery time for asymptomatic patients with moderate-to-severe aortic stenosis (AS) is made by healthcare professionals based on the patient’s clinical biometric records. A delay in surgical aortic valve replacement (SAVR) can potentially affect patients’ quality of life. By using ML algorithms, this study aims to predict the optimal SAVR timing and determine the enhancement in moderate-to-severe AS patient survival following surgery. This study represents a novel approach that has the potential to improve decision-making and, ultimately, improve patient outcomes. We analyze data from 176 patients with moderate-to-severe aortic stenosis who had undergone or… More >

  • Open Access

    ARTICLE

    Deep Learning Based Energy Consumption Prediction on Internet of Things Environment

    S. Balaji*, S. Karthik

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 727-743, 2023, DOI:10.32604/iasc.2023.037409

    Abstract The creation of national energy strategy cannot proceed without accurate projections of future electricity consumption; this is because EC is intimately tied to other forms of energy, such as oil and natural gas. For the purpose of determining and bettering overall energy consumption, there is an urgent requirement for accurate monitoring and calculation of EC at the building level using cutting-edge technology such as data analytics and the internet of things (IoT). Soft computing is a subset of AI that tries to design procedures that are more accurate and reliable, and it has proven to be an effective tool for… More >

  • Open Access

    ARTICLE

    Depth Map Prediction of Occluded Objects Using Structure Tensor with Gain Regularization

    H. Shalma, P. Selvaraj*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1145-1161, 2023, DOI:10.32604/iasc.2023.036853

    Abstract The creation of the 3D rendering model involves the prediction of an accurate depth map for the input images. A proposed approach of a modified semi-global block matching algorithm with variable window size and the gradient assessment of objects predicts the depth map. 3D modeling and view synthesis algorithms could effectively handle the obtained disparity maps. This work uses the consistency check method to find an accurate depth map for identifying occluded pixels. The prediction of the disparity map by semi-global block matching has used the benchmark dataset of Middlebury stereo for evaluation. The improved depth map quality within a… More >

  • Open Access

    ARTICLE

    An Improved Granulated Convolutional Neural Network Data Analysis Model for COVID-19 Prediction

    Meilin Wu1,2, Lianggui Tang1,2,*, Qingda Zhang1,2, Ke Yan1,2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 179-198, 2023, DOI:10.32604/iasc.2023.036684

    Abstract As COVID-19 poses a major threat to people’s health and economy, there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently. In non-stationary time series forecasting jobs, there is frequently a hysteresis in the anticipated values relative to the real values. The multilayer deep-time convolutional network and a feature fusion network are combined in this paper’s proposal of an enhanced Multilayer Deep Time Convolutional Neural Network (MDTCNet) for COVID-19 prediction to address this problem. In particular, it is possible to record the deep features and temporal dependencies in uncertain time series, and the features may then… More >

  • Open Access

    ARTICLE

    Long-Term Energy Forecasting System Based on LSTM and Deep Extreme Machine Learning

    Cherifa Nakkach*, Amira Zrelli, Tahar Ezzedine

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 545-560, 2023, DOI:10.32604/iasc.2023.036385

    Abstract Due to the development of diversified and flexible building energy resources, the balancing energy supply and demand especially in smart buildings caused an increasing problem. Energy forecasting is necessary to address building energy issues and comfort challenges that drive urbanization and consequent increases in energy consumption. Recently, their management has a great significance as resources become scarcer and their emissions increase. In this article, we propose an intelligent energy forecasting method based on hybrid deep learning, in which the data collected by the smart home through meters is put into the pre-evaluation step. Next, the refined data is the input… More >

Displaying 1-10 on page 1 of 686. Per Page  

Share Link