Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (110)
  • Open Access

    REVIEW

    Discrete Choice Models and Artificial Intelligence Techniques for Predicting the Determinants of Transport Mode Choice—A Systematic Review

    Mujahid Ali*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2161-2194, 2024, DOI:10.32604/cmc.2024.058888 - 18 November 2024

    Abstract Forecasting travel demand requires a grasp of individual decision-making behavior. However, transport mode choice (TMC) is determined by personal and contextual factors that vary from person to person. Numerous characteristics have a substantial impact on travel behavior (TB), which makes it important to take into account while studying transport options. Traditional statistical techniques frequently presume linear correlations, but real-world data rarely follows these presumptions, which may make it harder to grasp the complex interactions. Thorough systematic review was conducted to examine how machine learning (ML) approaches might successfully capture nonlinear correlations that conventional methods may… More >

  • Open Access

    ARTICLE

    Tree-Based Solution Frameworks for Predicting Tunnel Boring Machine Performance Using Rock Mass and Material Properties

    Danial Jahed Armaghani1,*, Zida Liu2, Hadi Khabbaz1, Hadi Fattahi3, Diyuan Li2, Mohammad Afrazi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2421-2451, 2024, DOI:10.32604/cmes.2024.052210 - 31 October 2024

    Abstract Tunnel Boring Machines (TBMs) are vital for tunnel and underground construction due to their high safety and efficiency. Accurately predicting TBM operational parameters based on the surrounding environment is crucial for planning schedules and managing costs. This study investigates the effectiveness of tree-based machine learning models, including Random Forest, Extremely Randomized Trees, Adaptive Boosting Machine, Gradient Boosting Machine, Extreme Gradient Boosting Machine (XGBoost), Light Gradient Boosting Machine, and CatBoost, in predicting the Penetration Rate (PR) of TBMs by considering rock mass and material characteristics. These techniques are able to provide a good relationship between input(s)… More >

  • Open Access

    ARTICLE

    Predicting Grain Orientations of 316 Stainless Steel Using Convolutional Neural Networks

    Dhia K. Suker, Ahmed R. Abdo*, Khalid Abdulkhaliq M. Alharbi

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 929-947, 2024, DOI:10.32604/iasc.2024.056341 - 31 October 2024

    Abstract This paper presents a deep learning Convolutional Neural Network (CNN) for predicting grain orientations from electron backscatter diffraction (EBSD) patterns. The proposed model consists of multiple neural network layers and has been trained on a dataset of EBSD patterns obtained from stainless steel 316 (SS316). Grain orientation changes when considering the effects of temperature and strain rate on material deformation. The deep learning CNN predicts material orientation using the EBSD method to address this challenge. The accuracy of this approach is evaluated by comparing the predicted crystal orientation with the actual orientation under different conditions, More >

  • Open Access

    ARTICLE

    Predicting Turbidite Channel in Deep-Water Canyon Based on Grey Relational Analysis-Support Vector Machine Model: A Case Study of the Lingshui Depression in Qiongdongnan Basin, South China Sea

    Haichen Li1,2, Jianghai Li1, Li Li3,4,*, Zhandong Li5,*

    Energy Engineering, Vol.121, No.9, pp. 2435-2447, 2024, DOI:10.32604/ee.2024.050771 - 19 August 2024

    Abstract The turbidite channel of South China Sea has been highly concerned. Influenced by the complex fault and the rapid phase change of lithofacies, predicting the channel through conventional seismic attributes is not accurate enough. In response to this disadvantage, this study used a method combining grey relational analysis (GRA) and support vector machine (SVM) and established a set of prediction technical procedures suitable for reservoirs with complex geological conditions. In the case study of the Huangliu Formation in Qiongdongnan Basin, South China Sea, this study first dimensionalized the conventional seismic attributes of Gas Layer Group… More >

  • Open Access

    ARTICLE

    Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study

    Farman Saifi1,*, Mohd Javaid1, Abid Haleem1, S. M. Anas2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2747-2777, 2024, DOI:10.32604/cmes.2024.051490 - 08 July 2024

    Abstract Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infrastructure systems and networks capable of withstanding blast loading. Initially centered on high-profile facilities such as embassies and petrochemical plants, this concern now extends to a wider array of infrastructures and facilities. Engineers and scholars increasingly prioritize structural safety against explosions, particularly to prevent disproportionate collapse and damage to nearby structures. Urbanization has further amplified the reliance on oil and gas pipelines, making them vital for urban life and prime targets for terrorist activities. Consequently, there is a growing imperative for computational… More >

  • Open Access

    ARTICLE

    A Novel ISSA–DELM Model for Predicting Rock Mass Permeability

    Chen Xing1, Leihua Yao1,*, Yingdong Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2825-2848, 2024, DOI:10.32604/cmes.2024.049330 - 08 July 2024

    Abstract In pumped storage projects, the permeability of rock masses is a crucial parameter in engineering design and construction. The rock mass permeability coefficient (K) is influenced by various geological parameters, and previous studies aimed to establish an accurate relationship between K and geological parameters. This study uses the improved sparrow search algorithm (ISSA) to optimize the parameter settings of the deep extreme learning machine (DELM), constructing a prediction model with flexible parameter selection and high accuracy. First, the Spearman method is applied to analyze the correlation between geological parameters. A sample database is built by comprehensively… More >

  • Open Access

    ARTICLE

    Predicting Users’ Latent Suicidal Risk in Social Media: An Ensemble Model Based on Social Network Relationships

    Xiuyang Meng1,2, Chunling Wang1,2,*, Jingran Yang1,2, Mairui Li1,2, Yue Zhang1,2, Luo Wang1,2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4259-4281, 2024, DOI:10.32604/cmc.2024.050325 - 20 June 2024

    Abstract Suicide has become a critical concern, necessitating the development of effective preventative strategies. Social media platforms offer a valuable resource for identifying signs of suicidal ideation. Despite progress in detecting suicidal ideation on social media, accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge. To tackle this, we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships (TCNN-SN). This model enhances predictive performance by leveraging social network relationship features More >

  • Open Access

    ARTICLE

    Predicting the Mechanical Behavior of a Bioinspired Nanocomposite through Machine Learning

    Xingzi Yang1, Wei Gao2, Xiaodu Wang1, Xiaowei Zeng1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1299-1313, 2024, DOI:10.32604/cmes.2024.049371 - 20 May 2024

    Abstract The bioinspired nacre or bone structure represents a remarkable example of tough, strong, lightweight, and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials. The bioinspired structure consists of hard grains and soft material interfaces. While the material interface has a very low volume percentage, its property has the ability to determine the bulk material response. Machine learning technology nowadays is widely used in material science. A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite. This model More >

  • Open Access

    ARTICLE

    A Hybrid Approach for Predicting the Remaining Useful Life of Bearings Based on the RReliefF Algorithm and Extreme Learning Machine

    Sen-Hui Wang1,2,*, Xi Kang1, Cheng Wang1, Tian-Bing Ma1, Xiang He2, Ke Yang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1405-1427, 2024, DOI:10.32604/cmes.2024.049281 - 20 May 2024

    Abstract Accurately predicting the remaining useful life (RUL) of bearings in mining rotating equipment is vital for mining enterprises. This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features. This study proposes a hybrid predictive model to assess the RUL of rolling element bearings. The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features. The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm. Subsequently,… More >

  • Open Access

    ARTICLE

    Artificial Neural Network Modeling for Predicting Thermal Conductivity of EG/Water-Based CNC Nanofluid for Engine Cooling Using Different Activation Functions

    Md. Munirul Hasan1, Md Mustafizur Rahman2,*, Mohammad Saiful Islam3, Wong Hung Chan4, Yasser M. Alginahi5, Muhammad Nomani Kabir6, Suraya Abu Bakar1, Devarajan Ramasamy2

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 537-556, 2024, DOI:10.32604/fhmt.2024.047428 - 20 May 2024

    Abstract A vehicle engine cooling system is of utmost importance to ensure that the engine operates in a safe temperature range. In most radiators that are used to cool an engine, water serves as a cooling fluid. The performance of a radiator in terms of heat transmission is significantly influenced by the incorporation of nanoparticles into the cooling water. Concentration and uniformity of nanoparticle distribution are the two major factors for the practical use of nanofluids. The shape and size of nanoparticles also have a great impact on the performance of heat transfer. Many researchers are… More > Graphic Abstract

    Artificial Neural Network Modeling for Predicting Thermal Conductivity of EG/Water-Based CNC Nanofluid for Engine Cooling Using Different Activation Functions

Displaying 1-10 on page 1 of 110. Per Page