Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Fusion of Region Extraction and Cross-Entropy SVM Models for Wheat Rust Diseases Classification

    Deepak Kumar1, Vinay Kukreja1, Ayush Dogra1,*, Bhawna Goyal2, Talal Taha Ali3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2097-2121, 2023, DOI:10.32604/cmc.2023.044287 - 29 November 2023

    Abstract Wheat rust diseases are one of the major types of fungal diseases that cause substantial yield quality losses of 15%–20% every year. The wheat rust diseases are identified either through experienced evaluators or computerassisted techniques. The experienced evaluators take time to identify the disease which is highly laborious and too costly. If wheat rust diseases are predicted at the development stages, then fungicides are sprayed earlier which helps to increase wheat yield quality. To solve the experienced evaluator issues, a combined region extraction and cross-entropy support vector machine (CE-SVM) model is proposed for wheat rust More >

  • Open Access

    ARTICLE

    Deep Learning-Based Model for Detection of Brinjal Weed in the Era of Precision Agriculture

    Jigna Patel1, Anand Ruparelia1, Sudeep Tanwar1,*, Fayez Alqahtani2, Amr Tolba3, Ravi Sharma4, Maria Simona Raboaca5,6,*, Bogdan Constantin Neagu7

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1281-1301, 2023, DOI:10.32604/cmc.2023.038796 - 31 October 2023

    Abstract The overgrowth of weeds growing along with the primary crop in the fields reduces crop production. Conventional solutions like hand weeding are labor-intensive, costly, and time-consuming; farmers have used herbicides. The application of herbicide is effective but causes environmental and health concerns. Hence, Precision Agriculture (PA) suggests the variable spraying of herbicides so that herbicide chemicals do not affect the primary plants. Motivated by the gap above, we proposed a Deep Learning (DL) based model for detecting Eggplant (Brinjal) weed in this paper. The key objective of this study is to detect plant and non-plant… More >

  • Open Access

    ARTICLE

    Increasing Crop Quality and Yield with a Machine Learning-Based Crop Monitoring System

    Anas Bilal1,*, Xiaowen Liu1, Haixia Long1,*, Muhammad Shafiq2, Muhammad Waqar3

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2401-2426, 2023, DOI:10.32604/cmc.2023.037857 - 30 August 2023

    Abstract Farming is cultivating the soil, producing crops, and keeping livestock. The agricultural sector plays a crucial role in a country’s economic growth. This research proposes a two-stage machine learning framework for agriculture to improve efficiency and increase crop yield. In the first stage, machine learning algorithms generate data for extensive and far-flung agricultural areas and forecast crops. The recommended crops are based on various factors such as weather conditions, soil analysis, and the amount of fertilizers and pesticides required. In the second stage, a transfer learning-based model for plant seedlings, pests, and plant leaf disease More >

  • Open Access

    ARTICLE

    AI Method for Improving Crop Yield Prediction Accuracy Using ANN

    T. Sivaranjani1,*, S. P. Vimal2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 153-170, 2023, DOI:10.32604/csse.2023.036724 - 26 May 2023

    Abstract Crop Yield Prediction (CYP) is critical to world food production. Food safety is a top priority for policymakers. They rely on reliable CYP to make import and export decisions that must be fulfilled before launching an agricultural business. Crop Yield (CY) is a complex variable influenced by multiple factors, including genotype, environment, and their interactions. CYP is a significant agrarian issue. However, CYP is the main task due to many composite factors, such as climatic conditions and soil characteristics. Machine Learning (ML) is a powerful tool for supporting CYP decisions, including decision support on which… More >

  • Open Access

    ARTICLE

    Harris Hawks Optimizer with Graph Convolutional Network Based Weed Detection in Precision Agriculture

    Saud Yonbawi1, Sultan Alahmari2, T. Satyanarayana Murthy3, Padmakar Maddala4, E. Laxmi Lydia5, Seifedine Kadry6,7,8,*, Jungeun Kim9

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1533-1547, 2023, DOI:10.32604/csse.2023.036296 - 09 February 2023

    Abstract Precision agriculture includes the optimum and adequate use of resources depending on several variables that govern crop yield. Precision agriculture offers a novel solution utilizing a systematic technique for current agricultural problems like balancing production and environmental concerns. Weed control has become one of the significant problems in the agricultural sector. In traditional weed control, the entire field is treated uniformly by spraying the soil, a single herbicide dose, weed, and crops in the same way. For more precise farming, robots could accomplish targeted weed treatment if they could specifically find the location of the… More >

  • Open Access

    ARTICLE

    Clustered Wireless Sensor Network in Precision Agriculture via Graph Theory

    L. R. Bindu1,*, P. Titus2, D. Dhanya3

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1435-1449, 2023, DOI:10.32604/iasc.2023.030591 - 05 January 2023

    Abstract Food security and sustainable development is making a mandatory move in the entire human race. The attainment of this goal requires man to strive for a highly advanced state in the field of agriculture so that he can produce crops with a minimum amount of water and fertilizer. Even though our agricultural methodologies have undergone a series of metamorphoses in the process of a present smart-agricultural system, a long way is ahead to attain a system that is precise and accurate for the optimum yield and profitability. Towards such a futuristic method of cultivation, this… More >

  • Open Access

    ARTICLE

    Computer Vision and Deep Learning-enabled Weed Detection Model for Precision Agriculture

    R. Punithavathi1, A. Delphin Carolina Rani2, K. R. Sughashini3, Chinnarao Kurangi4, M. Nirmala5, Hasmath Farhana Thariq Ahmed6, S. P. Balamurugan7,*

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2759-2774, 2023, DOI:10.32604/csse.2023.027647 - 01 August 2022

    Abstract Presently, precision agriculture processes like plant disease, crop yield prediction, species recognition, weed detection, and irrigation can be accomplished by the use of computer vision (CV) approaches. Weed plays a vital role in influencing crop productivity. The wastage and pollution of farmland's natural atmosphere instigated by full coverage chemical herbicide spraying are increased. Since the proper identification of weeds from crops helps to reduce the usage of herbicide and improve productivity, this study presents a novel computer vision and deep learning based weed detection and classification (CVDL-WDC) model for precision agriculture. The proposed CVDL-WDC technique More >

  • Open Access

    ARTICLE

    Autonomous Unmanned Aerial Vehicles Based Decision Support System for Weed Management

    Ashit Kumar Dutta1,*, Yasser Albagory2, Abdul Rahaman Wahab Sait3, Ismail Mohamed Keshta1

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 899-915, 2022, DOI:10.32604/cmc.2022.026783 - 18 May 2022

    Abstract Recently, autonomous systems become a hot research topic among industrialists and academicians due to their applicability in different domains such as healthcare, agriculture, industrial automation, etc. Among the interesting applications of autonomous systems, their applicability in agricultural sector becomes significant. Autonomous unmanned aerial vehicles (UAVs) can be used for suitable site-specific weed management (SSWM) to improve crop productivity. In spite of substantial advancements in UAV based data collection systems, automated weed detection still remains a tedious task owing to the high resemblance of weeds to the crops. The recently developed deep learning (DL) models have… More >

  • Open Access

    ARTICLE

    Soil Nutrient Detection and Recommendation Using IoT and Fuzzy Logic

    R. Madhumathi1,*, T. Arumuganathan2, R. Shruthi1

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 455-469, 2022, DOI:10.32604/csse.2022.023792 - 20 April 2022

    Abstract Precision agriculture is a modern farming practice that involves the usage of Internet of Things (IoT) to provide an intelligent farm management system. One of the important aspects in agriculture is the analysis of soil nutrients and balancing these inputs are essential for proper crop growth. The crop productivity and the soil fertility can be improved with effective nutrient management and precise application of fertilizers. This can be done by identifying the deficient nutrients with the help of an IoT system. As traditional approach is time consuming, an IoT-enabled system is developed using the colorimetry… More >

  • Open Access

    ARTICLE

    Design of Machine Learning Based Smart Irrigation System for Precision Agriculture

    Khalil Ibrahim Mohammad Abuzanouneh1, Fahd N. Al-Wesabi2, Amani Abdulrahman Albraikan3, Mesfer Al Duhayyim4, M. Al-Shabi5, Anwer Mustafa Hilal6, Manar Ahmed Hamza6,*, Abu Sarwar Zamani6, K. Muthulakshmi7

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 109-124, 2022, DOI:10.32604/cmc.2022.022648 - 24 February 2022

    Abstract Agriculture 4.0, as the future of farming technology, comprises numerous key enabling technologies towards sustainable agriculture. The use of state-of-the-art technologies, such as the Internet of Things, transform traditional cultivation practices, like irrigation, to modern solutions of precision agriculture. To achieve effective water resource usage and automated irrigation in precision agriculture, recent technologies like machine learning (ML) can be employed. With this motivation, this paper design an IoT and ML enabled smart irrigation system (IoTML-SIS) for precision agriculture. The proposed IoTML-SIS technique allows to sense the parameters of the farmland and make appropriate decisions for… More >

Displaying 1-10 on page 1 of 15. Per Page