Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    REVIEW

    Unlocking the Potential: A Comprehensive Systematic Review of ChatGPT in Natural Language Processing Tasks

    Ebtesam Ahmad Alomari*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 43-85, 2024, DOI:10.32604/cmes.2024.052256 - 20 August 2024

    Abstract As Natural Language Processing (NLP) continues to advance, driven by the emergence of sophisticated large language models such as ChatGPT, there has been a notable growth in research activity. This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain. This review paper systematically investigates the role of ChatGPT in diverse NLP tasks, including information extraction, Name Entity Recognition (NER), event extraction, relation extraction, Part of Speech (PoS) tagging, text classification, sentiment analysis, emotion recognition and text annotation. The novelty of this work lies in its… More >

  • Open Access

    ARTICLE

    A PERT-BiLSTM-Att Model for Online Public Opinion Text Sentiment Analysis

    Mingyong Li, Zheng Jiang*, Zongwei Zhao, Longfei Ma

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2387-2406, 2023, DOI:10.32604/iasc.2023.037900 - 21 June 2023

    Abstract As an essential category of public event management and control, sentiment analysis of online public opinion text plays a vital role in public opinion early warning, network rumor management, and netizens’ personality portraits under massive public opinion data. The traditional sentiment analysis model is not sensitive to the location information of words, it is difficult to solve the problem of polysemy, and the learning representation ability of long and short sentences is very different, which leads to the low accuracy of sentiment classification. This paper proposes a sentiment analysis model PERT-BiLSTM-Att for public opinion text… More >

  • Open Access

    ARTICLE

    Multimodal Spatiotemporal Feature Map for Dynamic Gesture Recognition

    Xiaorui Zhang1,2,3,*, Xianglong Zeng1, Wei Sun3,4, Yongjun Ren1,2,3, Tong Xu5

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 671-686, 2023, DOI:10.32604/csse.2023.035119 - 20 January 2023

    Abstract Gesture recognition technology enables machines to read human gestures and has significant application prospects in the fields of human-computer interaction and sign language translation. Existing researches usually use convolutional neural networks to extract features directly from raw gesture data for gesture recognition, but the networks are affected by much interference information in the input data and thus fit to some unimportant features. In this paper, we proposed a novel method for encoding spatio-temporal information, which can enhance the key features required for gesture recognition, such as shape, structure, contour, position and hand motion of gestures,… More >

Displaying 1-10 on page 1 of 3. Per Page