Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    Enhancing Multi-Modality Medical Imaging: A Novel Approach with Laplacian Filter + Discrete Fourier Transform Pre-Processing and Stationary Wavelet Transform Fusion

    Mian Muhammad Danyal1,2, Sarwar Shah Khan3,4,*, Rahim Shah Khan5, Saifullah Jan2, Naeem ur Rahman6

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 35-53, 2024, DOI:10.32604/jimh.2024.051340 - 08 July 2024

    Abstract Multi-modality medical images are essential in healthcare as they provide valuable insights for disease diagnosis and treatment. To harness the complementary data provided by various modalities, these images are amalgamated to create a single, more informative image. This fusion process enhances the overall quality and comprehensiveness of the medical imagery, aiding healthcare professionals in making accurate diagnoses and informed treatment decisions. In this study, we propose a new hybrid pre-processing approach, Laplacian Filter + Discrete Fourier Transform (LF+DFT), to enhance medical images before fusion. The LF+DFT approach highlights key details, captures small information, and sharpens… More >

  • Open Access

    ARTICLE

    Machine-Learning Based Packet Switching Method for Providing Stable High-Quality Video Streaming in Multi-Stream Transmission

    Yumin Jo1, Jongho Paik2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4153-4176, 2024, DOI:10.32604/cmc.2024.047046 - 26 March 2024

    Abstract Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream. However, when the transmission environment is unstable, problems such as reduction in the lifespan of equipment due to frequent switching and interruption, delay, and stoppage of services may occur. Therefore, applying a machine learning (ML) method, which is possible to automatically judge and classify network-related service anomaly, and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when… More >

  • Open Access

    ARTICLE

    Design of a Multi-Stage Ensemble Model for Thyroid Prediction Using Learning Approaches

    M. L. Maruthi Prasad*, R. Santhosh

    Intelligent Automation & Soft Computing, Vol.39, No.1, pp. 1-13, 2024, DOI:10.32604/iasc.2023.036628 - 29 March 2024

    Abstract This research concentrates to model an efficient thyroid prediction approach, which is considered a baseline for significant problems faced by the women community. The major research problem is the lack of automated model to attain earlier prediction. Some existing model fails to give better prediction accuracy. Here, a novel clinical decision support system is framed to make the proper decision during a time of complexity. Multiple stages are followed in the proposed framework, which plays a substantial role in thyroid prediction. These steps include i) data acquisition, ii) outlier prediction, and iii) multi-stage weight-based ensemble More >

  • Open Access

    REVIEW

    Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow

    Baydaa Abdul Kareem1,2, Salah L. Zubaidi2,3, Nadhir Al-Ansari4,*, Yousif Raad Muhsen2,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 1-41, 2024, DOI:10.32604/cmes.2023.027954 - 22 September 2023

    Abstract Forecasting river flow is crucial for optimal planning, management, and sustainability using freshwater resources. Many machine learning (ML) approaches have been enhanced to improve streamflow prediction. Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches. Current researchers have also emphasised using hybrid models to improve forecast accuracy. Accordingly, this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years, summarising data preprocessing, univariate machine learning modelling strategy, advantages and disadvantages of standalone ML… More > Graphic Abstract

    Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow

  • Open Access

    ARTICLE

    HIUNET: A Hybrid Inception U-Net for Diagnosis of Diabetic Retinopathy

    S. Deva Kumar, S. Venkatramaphanikumar*, K. Venkata Krishna Kishore

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1013-1032, 2023, DOI:10.32604/iasc.2023.038165 - 29 April 2023

    Abstract Type 2 diabetes patients often suffer from microvascular complications of diabetes. These complications, in turn, often lead to vision impairment. Diabetic Retinopathy (DR) detection in its early stage can rescue people from long-term complications that could lead to permanent blindness. In this study, we propose a complex deep convolutional neural network architecture with an inception module for automated diagnosis of DR. The proposed novel Hybrid Inception U-Net (HIUNET) comprises various inception modules connected in the U-Net fashion using activation maximization and filter map to produce the image mask. First, inception blocks were used to enlarge… More >

  • Open Access

    ARTICLE

    An Optimized Deep Learning Approach for Improving Airline Services

    Shimaa Ouf*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1213-1233, 2023, DOI:10.32604/cmc.2023.034399 - 06 February 2023

    Abstract The aviation industry is one of the most competitive markets. The most common approach for airline service providers is to improve passenger satisfaction. Passenger satisfaction in the aviation industry occurs when passengers’ expectations are met during flights. Airline service quality is critical in attracting new passengers and retaining existing ones. It is crucial to identify passengers’ pain points and enhance their satisfaction with the services offered. The airlines used a variety of techniques to improve service quality. They used data analysis approaches to analyze the passenger point data. These solutions have focused simply on surveys;… More >

  • Open Access

    ARTICLE

    An Automatic Threshold Selection Using ALO for Healthcare Duplicate Record Detection with Reciprocal Neuro-Fuzzy Inference System

    Ala Saleh Alluhaidan1,*, Pushparaj2, Anitha Subbappa3, Ved Prakash Mishra4, P. V. Chandrika5, Anurika Vaish6, Sarthak Sengupta6

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5821-5836, 2023, DOI:10.32604/cmc.2023.033995 - 28 December 2022

    Abstract ESystems based on EHRs (Electronic health records) have been in use for many years and their amplified realizations have been felt recently. They still have been pioneering collections of massive volumes of health data. Duplicate detections involve discovering records referring to the same practical components, indicating tasks, which are generally dependent on several input parameters that experts yield. Record linkage specifies the issue of finding identical records across various data sources. The similarity existing between two records is characterized based on domain-based similarity functions over different features. De-duplication of one dataset or the linkage of… More >

  • Open Access

    ARTICLE

    Salp Swarm Algorithm with Multilevel Thresholding Based Brain Tumor Segmentation Model

    Hanan T. Halawani*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6775-6788, 2023, DOI:10.32604/cmc.2023.030814 - 28 December 2022

    Abstract Biomedical image processing acts as an essential part of several medical applications in supporting computer aided disease diagnosis. Magnetic Resonance Image (MRI) is a commonly utilized imaging tool used to save glioma for clinical examination. Biomedical image segmentation plays a vital role in healthcare decision making process which also helps to identify the affected regions in the MRI. Though numerous segmentation models are available in the literature, it is still needed to develop effective segmentation models for BT. This study develops a salp swarm algorithm with multi-level thresholding based brain tumor segmentation (SSAMLT-BTS) model. The… More >

  • Open Access

    ARTICLE

    Adaptive Deep Learning Model for Software Bug Detection and Classification

    S. Sivapurnima*, D. Manjula

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1233-1248, 2023, DOI:10.32604/csse.2023.025991 - 03 November 2022

    Abstract Software is unavoidable in software development and maintenance. In literature, many methods are discussed which fails to achieve efficient software bug detection and classification. In this paper, efficient Adaptive Deep Learning Model (ADLM) is developed for automatic duplicate bug report detection and classification process. The proposed ADLM is a combination of Conditional Random Fields decoding with Long Short-Term Memory (CRF-LSTM) and Dingo Optimizer (DO). In the CRF, the DO can be consumed to choose the efficient weight value in network. The proposed automatic bug report detection is proceeding with three stages like pre-processing, feature extraction… More >

  • Open Access

    ARTICLE

    Qualitative Abnormalities of Peripheral Blood Smear Images Using Deep Learning Techniques

    G. Arutperumjothi1,*, K. Suganya Devi2, C. Rani3, P. Srinivasan4

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1069-1086, 2023, DOI:10.32604/iasc.2023.028423 - 06 June 2022

    Abstract In recent years, Peripheral blood smear is a generic analysis to assess the person’s health status. Manual testing of Peripheral blood smear images are difficult, time-consuming and is subject to human intervention and visual error. This method encouraged for researchers to present algorithms and techniques to perform the peripheral blood smear analysis with the help of computer-assisted and decision-making techniques. Existing CAD based methods are lacks in attaining the accurate detection of abnormalities present in the images. In order to mitigate this issue Deep Convolution Neural Network (DCNN) based automatic classification technique is introduced with… More >

Displaying 1-10 on page 1 of 14. Per Page