Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Predictive Maintenance Strategy for Photovoltaic Power Systems: Collaborative Optimization of Transformer-Based Lifetime Prediction and Opposition-Based Learning HHO Algorithm

    Wei Chen, Yang Wu*, Tingting Pei, Jie Lin, Guojing Yuan

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070905 - 27 January 2026

    Abstract In view of the insufficient utilization of condition-monitoring information and the improper scheduling often observed in conventional maintenance strategies for photovoltaic (PV) modules, this study proposes a predictive maintenance (PdM) strategy based on Remaining Useful Life (RUL) estimation. First, a RUL prediction model is established using the Transformer architecture, which enables the effective processing of sequential degradation data. By employing the historical degradation data of PV modules, the proposed model provides accurate forecasts of the remaining useful life, thereby supplying essential inputs for maintenance decision-making. Subsequently, the RUL information obtained from the prediction process is… More >

  • Open Access

    ARTICLE

    Robust Load Frequency Control in Hybrid Power Systems Using QOSCA-Tuned PID with EV Loads

    Pralay Roy1, Pabitra Kumar Biswas1, Chiranjit Sain2,*, Taha Selim Ustun3,*

    Energy Engineering, Vol.122, No.10, pp. 4035-4060, 2025, DOI:10.32604/ee.2025.068989 - 30 September 2025

    Abstract This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form, Quasi Oppositional Sine Cosine Algorithm, to automatic generation control of a multiple-source-based interconnected power system that consists of thermal, gas, and hydro power plants. The Proportional-Integral-Derivative controller, which is utilized for automated generation control in an interconnected hybrid power system with a DC link connecting two regions, has been tuned using the proposed optimization technique. An Electric Vehicle is taken into consideration only as an electrical load. The Quasi Oppositional Sine Cosine method’s performance and efficacy… More >

  • Open Access

    ARTICLE

    Fortifying Industry 4.0 Solar Power Systems: A Blockchain-Driven Cybersecurity Framework with Immutable LightGBM

    Asrar Mahboob1, Muhammad Rashad1, Ghulam Abbas1, Zohaib Mushtaq2, Tehseen Mazhar3,*, Ateeq Ur Rehman4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3805-3823, 2025, DOI:10.32604/cmc.2025.067615 - 23 September 2025

    Abstract This paper presents a novel blockchain-embedded cybersecurity framework for industrial solar power systems, integrating immutable machine learning (ML) with distributed ledger technology. Our contribution focused on three factors, Quantum-resistant feature engineering using the UNSW-NB15 dataset adapted for solar infrastructure anomalies. An enhanced Light Gradient Boosting Machine (LightGBM) classifier with blockchain-validated decision thresholds, and A cryptographic proof-of-threat (PoT) consensus mechanism for cyber attack verification. The proposed Immutable LightGBM model with majority voting and cryptographic feature encoding achieves 96.9% detection accuracy with 0.97 weighted average of precision, recall and F1-score, outperforming conventional intrusion detection systems (IDSs) by… More >

  • Open Access

    ARTICLE

    Robust False Data Injection Identification Framework for Power Systems Using Explainable Deep Learning

    Ghadah Aldehim, Shakila Basheer, Ala Saleh Alluhaidan, Sapiah Sakri*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3599-3619, 2025, DOI:10.32604/cmc.2025.065643 - 23 September 2025

    Abstract Although digital changes in power systems have added more ways to monitor and control them, these changes have also led to new cyber-attack risks, mainly from False Data Injection (FDI) attacks. If this happens, the sensors and operations are compromised, which can lead to big problems, disruptions, failures and blackouts. In response to this challenge, this paper presents a reliable and innovative detection framework that leverages Bidirectional Long Short-Term Memory (Bi-LSTM) networks and employs explanatory methods from Artificial Intelligence (AI). Not only does the suggested architecture detect potential fraud with high accuracy, but it also… More >

  • Open Access

    ARTICLE

    Differential Privacy Integrated Federated Learning for Power Systems: An Explainability-Driven Approach

    Zekun Liu1, Junwei Ma1,2,*, Xin Gong1, Xiu Liu1, Bingbing Liu1, Long An1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 983-999, 2025, DOI:10.32604/cmc.2025.065978 - 29 August 2025

    Abstract With the ongoing digitalization and intelligence of power systems, there is an increasing reliance on large-scale data-driven intelligent technologies for tasks such as scheduling optimization and load forecasting. Nevertheless, power data often contains sensitive information, making it a critical industry challenge to efficiently utilize this data while ensuring privacy. Traditional Federated Learning (FL) methods can mitigate data leakage by training models locally instead of transmitting raw data. Despite this, FL still has privacy concerns, especially gradient leakage, which might expose users’ sensitive information. Therefore, integrating Differential Privacy (DP) techniques is essential for stronger privacy protection.… More >

  • Open Access

    ARTICLE

    Random Forest and Order Parameters: A Combined Framework for Scenario Recognition for Power Systems with Renewable Penetration

    Xiaolong Xiao1, Xiaoxing Lu1,*, Ziran Guo1, Jian Liu1, Shenglong Wu2, Ye Cai2

    Energy Engineering, Vol.122, No.8, pp. 3117-3132, 2025, DOI:10.32604/ee.2025.065631 - 24 July 2025

    Abstract With the popularization of microgrid construction and the connection of renewable energy sources to the power system, the problem of source and load uncertainty faced by the coordinated operation of multi-microgrid is becoming increasingly prominent, and the accuracy of typical scenario predictions is low. In order to improve the accuracy of scenario prediction under source and load uncertainty, this paper proposes a typical scenario identification model based on random forests and order parameters. Firstly, a method for ordinal parameter identification and quantification is provided for the coordinated operating mode of multi-microgrids, taking into account source-load… More >

  • Open Access

    ARTICLE

    Hierarchical Optimal Scheduling Strategy for High Proportion New Energy Power Systems Considering Balanced Response to Grid Flexibility

    Cuiping Li1, Jiacheng Sun1, Qiang Li2, Qi Guo2, Junhui Li1,*, Shuo Yu2, Jingbo Wang2, Wenze Li2

    Energy Engineering, Vol.122, No.8, pp. 3055-3077, 2025, DOI:10.32604/ee.2025.064440 - 24 July 2025

    Abstract The penetration rate of new wind and photovoltaic energy in the power system has increased significantly, and the dramatic fluctuation of the net load of the grid has led to a severe lack of flexibility in the regional grid. This paper proposes a hierarchical optimal dispatch strategy for a high proportion of new energy power systems that considers the balanced response of grid flexibility. Firstly, various flexibility resource regulation capabilities on the source-load side are analyzed, and then flexibility demand and flexibility response are matched, and flexibility demand response assessment is proposed; then, a hierarchical… More >

  • Open Access

    ARTICLE

    Real-Time Fault Detection and Isolation in Power Systems for Improved Digital Grid Stability Using an Intelligent Neuro-Fuzzy Logic

    Zuhaib Nishtar1,*, Fangzong Wang1, Fawwad Hassan Jaskani2, Hussain Afzaal3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2919-2956, 2025, DOI:10.32604/cmes.2025.065098 - 30 June 2025

    Abstract This research aims to address the challenges of fault detection and isolation (FDI) in digital grids, focusing on improving the reliability and stability of power systems. Traditional fault detection techniques, such as rule-based fuzzy systems and conventional FDI methods, often struggle with the dynamic nature of modern grids, resulting in delays and inaccuracies in fault classification. To overcome these limitations, this study introduces a Hybrid Neuro-Fuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning strength of fuzzy logic. The model’s performance was evaluated through extensive simulations on the… More >

  • Open Access

    ARTICLE

    Development of Micro Hydropower Systems in Amazonia Using Multiple Axial-Flow Turbines

    Rodolfo V. C. Ramalho1, Vitoria B. Portilho1, Davi E. S. Souza1, Gilton C. A. Furtado1, Natália M. Graças2, Manoel J. S. Sena2, Cláudio J. C. Blanco2, André L. Amarante Mesquita1,*

    Energy Engineering, Vol.122, No.6, pp. 2197-2213, 2025, DOI:10.32604/ee.2025.064196 - 29 May 2025

    Abstract Despite significant Brazilian social programs to expand energy access, approximately one million people in rural Amazonia still lack electricity. Moreover, the existing rural electricity grid in the region is inadequate for supporting efficient small-scale production systems due to both the poor quality and high cost of supplied energy. In parallel, traditional wooden bridges in the Amazon have been progressively replaced by more durable concrete structures in recent years. In this context, this study explores the application of very low-head hydropower installations in the Amazon, focusing on integrating axial-flow turbines beneath small concrete bridges. The methodology… More > Graphic Abstract

    Development of Micro Hydropower Systems in Amazonia Using Multiple Axial-Flow Turbines

  • Open Access

    ARTICLE

    Smart Grid Security Framework for Data Transmissions with Adaptive Practices Using Machine Learning Algorithm

    Shitharth Selvarajan1,2,3,*, Hariprasath Manoharan4, Taher Al-Shehari5, Hussain Alsalman6, Taha Alfakih7

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4339-4369, 2025, DOI:10.32604/cmc.2025.056100 - 06 March 2025

    Abstract This research presents an analysis of smart grid units to enhance connected units’ security during data transmissions. The major advantage of the proposed method is that the system model encompasses multiple aspects such as network flow monitoring, data expansion, control association, throughput, and losses. In addition, all the above-mentioned aspects are carried out with neural networks and adaptive optimizations to enhance the operation of smart grid networks. Moreover, the quantitative analysis of the optimization algorithm is discussed concerning two case studies, thereby achieving early convergence at reduced complexities. The suggested method ensures that each communication More >

Displaying 1-10 on page 1 of 24. Per Page