Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    PROCEEDINGS

    Mechanical Properties of CP Ti Processed via a High-Precision Laser Powder Bed Fusion Process

    Hui Liu1, Xu Song1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011362

    Abstract Because of its higher specific strength and better biocompatibility, commercially pure titanium (CP Ti) is widely used for product fabrication in the aerospace, medical, and other industries. Currently, different ways are adopted to strengthen CP Ti, such as solid-solution strengthening using oxygen or adding metal components to form alloys; however, the introduction of oxygen, other gases, or alloying elements reduces the corrosion resistance and biocompatibility. Herein, CP Ti with a low oxygen content was used to fabricate samples via a high-precision laser powder bed fusion process. Smaller laser beam diameter and thinner layer thickness lead More >

  • Open Access

    PROCEEDINGS

    Effects of Hold Time on Fatigue Crack Growth Behavior in PBF-EB Inconel 718

    Qiuyi Wang1, Rong Yang1, Bo Chen2, Rui Bao1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011878

    Abstract Effects of hold time on the fatigue crack growth behavior in electron-beam powder-bed-fusion (PBF-EB) Inconel 718 alloy at 650 ∘C have been investigated in this study, with focuses on the anisotropic fatigue cracking resistance and fracture mechanism. The V-type specimen (which loading parallel to the columnar grain boundaries) gives better dwell-fatigue cracking resistance to the H-type specimen (which loading perpendicular to the columnar grain boundaries) due to its large deflections (nearly 90 °) on the crack path. These deflections are related to the change of crack growth mechanism. In both V-type and H-type specimens, when More >

  • Open Access

    ARTICLE

    Mesoscopic-Scale Numerical Investigation Including the Inuence of Process Parameters on LPBF Multi-Layer Multi-Path Formation

    Liu Cao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 5-23, 2021, DOI:10.32604/cmes.2021.014693 - 22 December 2020

    Abstract As a typical laser additive manufacturing technology, laser powder bed fusion (LPBF) has achieved demonstration applications in aerospace, biomedical and other fields. However, how to select process parameters quickly and reasonably is still the main concern of LPBF production. In order to quantitatively analyze the inuence of different process parameters (laser power, scanning speed, hatch space and layer thickness) on the LPBF process, the multi-layer and multi-path forming process of LPBF was predicted based on the open-source discrete element method framework Yade and the open-source finite volume method framework OpenFOAM. Based on the design of… More >

Displaying 1-10 on page 1 of 3. Per Page