Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    PROCEEDINGS

    Wall-Thickness Dependent Microstructure Evolution of GH4169 Thin-Walled Components Fabricated by Laser Powder Bed Fusion

    Zhancai Zhan1, Penghang Ling1, Wugui Jiang1,*, Tao Chen1, Qinghua Qin2,3, Longhui Mao1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011400

    Abstract In the intricate and multi-physical process of Laser Powder Bed Fusion (LPBF), the microstructure significantly influences the performance of the resulting components, particularly evident in the manufacturing of thin-walled structures. In this paper, a prediction model of microstructure evolution coupled with 3D cellular automaton (CA) and finite element (FE) method for thin-walled components of GH4169 fabricated by LPBF is established. In this model, the multi-layer and multi-track temperature field within the interest region of thin-walled parts is simulated by the FE method. Subsequently, the temperature history is transferred to the CA model for predicting the… More >

  • Open Access

    PROCEEDINGS

    Superior Mechanical Properties of a Zr-Based Bulk Metallic Glass via Laser Powder Bed Fusion Process Control

    Bosong Li1, Jamie J. Kruzic1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011331

    Abstract Additive manufacturing has made the fabrication of large-dimensioned bulk metallic glasses (BMGs) achievable; however, questions remain regarding how to control the processing parameters to obtain dense and fully amorphous BMGs with desirable mechanical properties. Here, laser powder bed fusion (LPBF) was used to produce dense and fully amorphous Zr59.3Cu28.8Nb1.5Al10.4 BMG samples from two different starting powders within a large processing window of laser powers and scanning speeds. X-ray diffraction (XRD) revealed that fully amorphous materials with high relative densities (>99%) were obtained when the LPBF energy density ranged from ~20 J/mm3 up to ~33 J/mm3 for coarse… More >

  • Open Access

    PROCEEDINGS

    Numerical Study of Fracture Mechanisms in Metal Powder Bed Fusion Additive Manufacturing Processes

    Lu Liu1, Bo Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012741

    Abstract Powder-Bed Fusion (PBF) is a prominent metal additive manufacturing technology known for its adaptability and commercial viability. However, it is often hindered by defects such as voids, un-melted particles, microcracking, and columnar grains, which are generally more pronounced than those found in traditional manufacturing methods. Microcracking, in particular, poses a significant challenge, limiting the use of PBF materials in safety-critical applications across various industries. This study presents an advanced computational framework that effectively addresses the complex interactions of thermal, fluid dynamics, structural mechanics, crystallization, and fracture phenomena at meso and macroscopic levels. This framework has More >

  • Open Access

    PROCEEDINGS

    High-Resolution Multi-Metal 3D Printing: A Novel Approach Using Binder Jet Printing and Selecting Laser Melting in Powder Bed Fusion

    Beng-Loon Aw1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011990

    Abstract This study introduces a novel method that combines Binder Jet Printing (BJP) and Selective Laser Melting (SLM) techniques to achieve unprecedented high-speed and high-resolution 3D printing of fine metal powders in Laser Powder Bed Fusion (LPBF). Our approach comfortably attains a resolution of 0.2 mm, enabling the selective deposition of fine powder (D50: 30 µm) made from multiple materials within a single print layer. We demonstrate the capability of this technique through the printing of a composite structure composed of copper alloy and 18Ni300 Maraging tool steel, showcasing its potential for fast-cooling tooling applications. The More >

  • Open Access

    PROCEEDINGS

    Advanced Powder Fabrication Techniques for Laser Powder Bed Fusion

    Naoyuki Nomura1,*, Mingqi Dong1, Zhenxing Zhou1, Weiwei Zhou1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012381

    Abstract Laser powder bed fusion (L-PBF) exhibits many technological opportunities for producing high-performance metallic parts with tailored architectures. However, fabrication of suitable composite powders possessing good flowability, controllable particle size and distribution is a currently prerequisite and main challenge. In this work, two novel techniques, namely freeze-dry pulsated orifice ejection method (FD-POEM) [1] and ultrafine bubble (UFB)-assisted heteroagglomeration [2], have been developed to fabricate uniform composite powders. By taking MoSiBTiC alloy powders as an example, the working principle of FD-POEM process was firstly illustrated. The spherical FD-POEM particles were consisted of typical mesh structures induced by… More >

  • Open Access

    PROCEEDINGS

    In-Situ Carbide-Reinforced NiCoCr Medium-Entropy Alloy Manufactured by Laser Powder Bed Fusion; Fabrication, Microstructure, Mechanical Property, and High Temperature Oxidation Behavior

    Kee-Ahn Lee1,*, So-Yeon Park1, Soo-Bin Kim1, Young-Kyun Kim1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012196

    Abstract NiCoCr medium-entropy alloys (MEAs) with controlled interstitial C contents were fabricated by using powder bed fusion-type additive manufacturing (AM) process. And the microstructure, mechanical properties, and high temperature oxidation resistance of in-situ carbide-reinforced NiCoCr Medium alloy were investigated. The initial microstructure shows that both AM-built interstitial C-doped MEAs had a heterogeneous grain structure and epitaxial growth grains along the building direction. The analysis of electron channeling contrast images showed a large amount of nano-sized precipitates (in-situ precipitates) distributed at the sub-structure boundaries formed by a dislocation network, and a large number of stacking faults were simultaneously observed inside the sub-structure. A… More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Microstructure Manipulation of an Additively Manufactured CoCrNi Medium Entropy Alloy for Superior Mechanical Properties and Tunable Mechanical Anisotropy

    Chenze Li1, Manish Jain1,2, Qian Liu1, Zhuohan Cao1, Michael Ferry3, Jamie J. Kruzic1, Bernd Gludovatz1, Xiaopeng Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011290

    Abstract Laser powder bed fusion (LPBF) additive manufacturing (AM) technology has become a versatile tool for producing new microstructures in metal components, offering novel mechanical properties for different applications. In this work, enhanced ductility (~55% elongation) and tunable mechanical anisotropy (ratio of ductility along vertical to horizontal orientation from ~0.2 to ~1) were achieved for a CoCrNi medium entropy alloy (MEA) by multi-scale synergistic microstructure manipulation (i.e., melt pool boundary, grain morphology and crystallographic texture) through adjusting key LPBF processing parameters (e.g., laser power and scan speed). By increasing the volumetric energy density (VED) from 68.3… More >

  • Open Access

    PROCEEDINGS

    Multi-Modality In-Situ Monitoring Big Data Mining for Enhanced Insight into the Laser Powder Bed Fusion Process, Structure, and Properties

    Xiayun Zhao1,*, Haolin Zhang1, Md Jahangir Alam1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011479

    Abstract Laser powder bed fusion (LPBF) is one predominant additive manufacturing (AM) technology for producing metallic parts with sophisticated designs that can find numerous applications in critical industries such as aerospace. To achieve precise, resilient, and intelligent LPBF, a comprehensive understanding of the dynamic processes and material responses within the actual conditions of LPBF-based AM is essential. However, obtaining such insights is challenging due to the intricate interactions among the laser, powder, part layers, and gas flow, among other factors. Multimodal in-situ monitoring is desired to visualize diverse process signatures, allowing for the direct and thorough… More >

  • Open Access

    PROCEEDINGS

    In-Situ Monitoring of Interplay Between Melt Pool, Spatter and Vapor in Laser Powder Bed Fusion Additive Manufacturing

    Xin Lin1,2,3, Kunpeng Zhu1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012499

    Abstract This paper reveals the interplay mechanism between melt pool, spattering and vapors, aiming to further improve the forming quality through in-situ monitoring with a CMOS camera. A Residual Network based on Convolutional Block Attention Module and Focal loss function is proposed to extract multi-scale features of single tracks and learn about their behavior changes. A t-SNE clustering analysis is utilized to analysis a large amount of time sequence data on the melt pool by collecting the schlieren photographs. It is found that patterns of unstable melt pool changing corelate to the defects in single tracks, More >

  • Open Access

    PROCEEDINGS

    Recycling of Spent CuCrZr Powder by Laser Powder Bed Fusion: Microstructure Evolution and Properties

    Lizheng Zhang1,2, Jimin Chen1,2,*, Yong Zeng1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011127

    Abstract In laser powder bed fusion (LPBF), the unmelted powder recovered from the powder bed is degraded due to particle-laser interaction during continuous processing. The sensitivity of LPBF performance and molding quality to powder properties, waste powder is usually discarded after several molding cycles, which increases the cost of raw materials. At the same time, the low laser absorption rate and high thermal conductivity of copper and copper alloys inhibit the complete melting of copper powder prepared by LPBF. Therefore, it is challenging to fabricate copper alloy components with full high density and high conductivity through… More >

Displaying 1-10 on page 1 of 13. Per Page