Ying Qu1, Jinhao Wang1, Xueting Cheng1, Jie Hao1, Weiru Wang1, Zhewen Niu2, Yuxiang Wu2,*
Energy Engineering, Vol.121, No.7, pp. 1847-1863, 2024, DOI:10.32604/ee.2024.048300
- 11 June 2024
Abstract The data-driven transient stability assessment (TSA) of power systems can predict online real-time prediction by learning the temporal features before and after faults. However, the accuracy of the assessment is limited by the quality of the data and has weak transferability. Based on this, this paper proposes a method for TSA of power systems based on an improved extreme gradient boosting (XGBoost) model. Firstly, the gradient detection method is employed to remove noise interference while maintaining the original time series trend. On this basis, a focal loss function is introduced to guide the training of… More >