Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    PROCEEDINGS

    Three-Dimensionally Printed Transition Metal Catalysts with Hierarchically Porous Structures for Wastewater Purification

    Sheng Guo1,2,*, Mengmeng Yang1, Yao Huang2, Xizi Gao1, Chao Cai3,*, Kun Zhou4,5,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012655

    Abstract 3D printing technology has demonstrated considerable potential in wastewater remediation. Zero-valent metal (ZVM) has been recognized as an efficient catalyst facilitating the organic pollutant degradation in water. However, owing to its inclination toward oxidation and aggregation, the practical utilization of ZVM remains a challenge. Herein, we have employed 3D printing techniques to fabricate hierarchically porous ZVM, such as zero-valent copper and zero-valent iron, which exhibit a high level of printing precision and commendable resistance to compression. These 3D-ZVM catalysts can effectively activate peroxymonosulfate (PMS), thereby degrading various organic pollutants, including tetracycline, ciprofloxacin, rhodamine B, and… More >

  • Open Access

    PROCEEDINGS

    Peeling Induced Defects Investigation of Hydroxyapatite/Polymer Porous Structures Fabricated by Vat Photopolymerization

    Haowen Liang1, Jiaming Bai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012563

    Abstract Defects are pivotal in influencing the mechanical performance of the hydroxyapatite (HAp) porous structure. In vat photopolymerization (VP) fabrication, directly peeling HAp/polymer green structure from the platform is an efficient approach but often introduces defects, compromising the mechanical performance of sintered HAp scaffolds. The peeling process is a physical phenomenon where the photocured HAp/polymer green structure exhibits resistance against applied peeling forces, which is influenced by its modulus and toughness. In this study, the peeling behavior of cubic-pore HAp (CP-HAp) green structures with varying levels of modulus and toughness was investigated in detail. The characterization… More >

  • Open Access

    ARTICLE

    Multi-Material Topology Optimization for Spatial-Varying Porous Structures

    Chengwan Zhang1, Kai Long1,*, Zhuo Chen1,2, Xiaoyu Yang1, Feiyu Lu1, Jinhua Zhang3, Zunyi Duan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 369-390, 2024, DOI:10.32604/cmes.2023.029876 - 22 September 2023

    Abstract This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials. The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass, as well as the local volume fraction of all phases. The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function, avoiding the parameter dependence in the conventional aggregation process. Furthermore, the local volume percentage can be precisely satisfied. The effects including the global mass bound, the influence More >

  • Open Access

    PROCEEDINGS

    Fracture Behavior of Periodic Porous Structures by Phase Field Method

    Yuxuan Ying1, Wei Huang1,*, Yu-E Ma1, Fan Peng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.010572

    Abstract Intensive dynamic loadings are the main threats to the structural damage of protective structures and inner equipment, which has attracted a lot of attention in the field of advance impulsive resistance. Nanofluidic liquid foam (NLF) has become a novel and efficient energy absorption system due to its reusable energy absorption, ultra-high load transfer, and high energy absorption ratio. In order to solve the current problem that the energy absorption mechanism of NLF is still unclear, this paper conducted a systematic experimental study on the dynamic compression and energy absorption behaviours of NLF. The quasi-static cyclic… More >

  • Open Access

    ARTICLE

    Optimal Design of Porous Media in Solar Vapor Generators by Carbon Fiber Bundles

    Mohammad Yaghoub Abdollahzadeh Jamalabadi, Jinxiang Xi*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 65-79, 2023, DOI:10.32604/fhmt.2023.042613 - 30 November 2023

    Abstract As a means of harvesting solar energy for water treatment, solar-driven vapor generation is becoming more appealing. Due to their entangled fibrous networks and high surface area, fibers can be used as building blocks to generate water vapor. In this paper, using a two-dimensional fiber bundle model, we studied the generation of solar vapor based on the fiber height, distance between fibers, and input sun radiation. The performance of solar absorption system was also evaluated by evaluating thermal and water management. Results showed a constant increase in solar vapor generation with an increasing fiber height… More > Graphic Abstract

    Optimal Design of Porous Media in Solar Vapor Generators by Carbon Fiber Bundles

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY OF ENHANCED NUCLEATE BOILING HEAT TRANSFER ON UNIFORM AND MODULATED POROUS STRUCTURES

    Calvin Hong Lia, G. P. Petersonb,*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-10, 2010, DOI:10.5098/hmt.v1.2.3007

    Abstract An experimental investigation of the Critical Heat Flux (CHF) and heat transfer coefficient (HTC) of two-phase heat transfer of de-Ionized (DI) water, pool boiling was conducted using several kinds of sintered copper microparticle porous uniform and modulated structures. The modulated porous structure reached a heat flux of 450 W/cm2 and a heat transfer coefficient of 230,000 W/m2K. The thick and thin uniform porous structures achieved CHFs of 290 W/cm2 and 227 W/cm2 , respectively, and heat transfer coefficients of 118,000 W/m2K and 104,000 W/m2K. The mechanisms for the dramatically improved CHFs and HTCs were identified with assistance of More >

Displaying 1-10 on page 1 of 6. Per Page