Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (74)
  • Open Access

    ARTICLE

    Unsteady Flow of Hybrid Nanofluid with Magnetohydrodynamics- Radiation-Natural Convection Effects in a U-Shaped Wavy Porous Cavity

    Taher Armaghani1, Lioua Kolsi2, Najiyah Safwa Khashi’ie3,*, Ahmed Muhammed Rashad4, Muhammed Ahmed Mansour5, Taha Salah6, Aboulbaba Eladeb7

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2225-2251, 2024, DOI:10.32604/cmes.2024.056676 - 31 October 2024

    Abstract In this paper, the unsteady magnetohydrodynamic (MHD)-radiation-natural convection of a hybrid nanofluid within a U-shaped wavy porous cavity is investigated. This problem has relevant applications in optimizing thermal management systems in electronic devices, solar energy collectors, and other industrial applications where efficient heat transfer is very important. The study is based on the application of a numerical approach using the Finite Difference Method (FDM) for the resolution of the governing equations, which incorporates the Rosseland approximation for thermal radiation and the Darcy-Brinkman-Forchheimer model for porous media. It was found that the increase of Hartmann number… More >

  • Open Access

    ARTICLE

    Enhanced Evaporation of Ternary Mixtures in Porous Medium with Microcolumn Configuration

    Bo Zhang1, Yunxie Huang2, Peilin Cui2, Zhiguo Wang1, Duo Ding1, Zhenhai Pan3, Zhenyu Liu2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 997-1016, 2024, DOI:10.32604/fhmt.2024.053592 - 30 August 2024

    Abstract The high surface area of porous media enhances its efficacy for evaporative cooling, however, the evaporation of pure substances often encounters issues including local overheating and unstable heat transfer. To address these challenges, a volume of fluid (VOF) model integrated with a species transport model was developed to predict the evaporation processes of ternary mixtures (water, glycerol, and 1,2-propylene glycol) in porous ceramics in this study. It reveals that the synergistic effects of thermal conduction and convective heat transfer significantly influence the mixtures evaporation, causing the fluctuations in evaporation rates. The obtained result shows a More >

  • Open Access

    ARTICLE

    Casson Nanofluid Flow with Cattaneo-Christov Heat Flux and Chemical Reaction Past a Stretching Sheet in the Presence of Porous Medium

    Mahzad Ahmed1, Raja Mussadaq Yousaf2, Ali Hassan3,4,*, B. Shankar Goud5

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1261-1276, 2024, DOI:10.32604/fhmt.2024.048091 - 30 August 2024

    Abstract In the current work, inclined magnetic field, thermal radiation, and the Cattaneo-Christov heat flux are taken into account as we analyze the impact of chemical reaction on magneto-hydrodynamic Casson nanofluid flow on a stretching sheet. Modified Buongiorno’s nanofluid model has been used to model the flow governing equations. The stretching surface is embedded in a porous medium. By using similarity transformations, the nonlinear partial differential equations are transformed into a set of dimensionless ordinary differential equations. The numerical solution of transformed dimensionless equations is achieved by applying the shooting procedure together with Rung-Kutta 4th-order method… More >

  • Open Access

    ARTICLE

    Modeling of Leachate Propagation in a Municipal Solid Waste Landfill Foundation

    Nadezhda Zubova*, Andrey Ivantsov

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1407-1424, 2024, DOI:10.32604/fdmp.2024.051130 - 27 June 2024

    Abstract The study deals with the numerical modeling of leachate distribution in the porous medium located under a municipal solid waste disposal landfill (MSWLF). The considered three-layer system is based on geological data obtained from field measurements. For simplicity, the problem is investigated by assuming a two-component approach. Nevertheless, the heat produced by landfills due to biological and chemical processes and the thermal diffusion mechanism contributing to pollution transport are taken into account. The numerical modeling of the propagation of leachate in the considered layered porous medium is implemented for parameters corresponding to natural soil and More >

  • Open Access

    ARTICLE

    Thermal Radiation Effects on 2D Stagnation Point Flow of a Heated Stretchable Sheet with Variable Viscosity and MHD in a Porous Medium

    Muhammad Abaid Ur Rehman1,*, Muhammad Asif Farooq1, Ahmed M. Hassan2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 263-286, 2024, DOI:10.32604/fhmt.2023.044587 - 21 March 2024

    Abstract This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation, variable viscosity, and MHD. This study’s main purpose is to examine how thermal radiation and varying viscosity affect fluid flow motion. Additionally, we consider the convective boundary conditions and incorporate the gyrotactic microorganisms equation, which describes microorganism behavior in response to fluid flow. The partial differential equations (PDEs) that represent the conservation equations for mass, momentum, energy, and microorganisms are then converted into a system of coupled… More >

  • Open Access

    ARTICLE

    MHD (SWCNTS + MWCNTS)/H2O-Based Williamson Hybrid Nanouids Flow Past Exponential Shrinking Sheet in Porous Medium

    Hamzeh Taha Alkasasbeh1,*, Muhammad Khairul Anuar Mohamed2

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 265-279, 2023, DOI:10.32604/fhmt.2023.041539 - 30 November 2023

    Abstract The present study numerically investigates the flow and heat transfer of porous Williamson hybrid nanofluid on an exponentially shrinking sheet with magnetohydrodynamic (MHD) effects. The nonlinear partial differential equations which governed the model are first reduced to a set of ordinary differential equations by using the similarity transformation. Next, the BVP4C solver is applied to solve the equations by considering the pertinent fluid parameters such as the permeability parameter, the magnetic parameter, the Williamson parameter, the nanoparticle volume fractions and the wall mass transfer parameter. The single (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) nanoparticles are More >

  • Open Access

    ARTICLE

    Computational Analysis of Heat and Mass Transfer in Magnetized Darcy-Forchheimer Hybrid Nanofluid Flow with Porous Medium and Slip Effects

    Nosheen Fatima1, Nabeela Kousar1, Khalil Ur Rehman2,3,*, Wasfi Shatanawi2,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2311-2330, 2023, DOI:10.32604/cmes.2023.026994 - 03 August 2023

    Abstract A computational analysis of magnetized hybrid Darcy-Forchheimer nanofluid flow across a flat surface is presented in this work. For the study of heat and mass transfer aspects viscous dissipation, activation energy, Joule heating, thermal radiation, and heat generation effects are considered. The suspension of nanoparticles singlewalled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are created by hybrid nanofluids. However, single-walled carbon nanotubes (SWCNTs) produce nanofluids, with water acting as conventional fluid, respectively. Nonlinear partial differential equations (PDEs) that describe the ultimate flow are converted to nonlinear ordinary differential equations (ODEs) using appropriate similarity transformation.… More >

  • Open Access

    ARTICLE

    FINITE ELEMENT ANALYSYS OF RADIATIVE UNSTEADY MHD VISCOUS DISSIPATIVE MIXED CONVECTION FLUID FLOW PAST AN IMPULSIVELY STARTED OSCILLATING PLATE IN THE PRESENCE OF HEAT SOURCE

    D. Santhi Kumaria,* , Venkata Subrahmanyam Sajjaa , P. M. Kishoreb,†

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-11, 2023, DOI:10.5098/hmt.20.5

    Abstract The aim of present study is an influence of viscous dissipation and heat source on an unsteady MHD mixed convective, fluid flow past an impulsively started oscillating plate embedded in a porous medium in presence of magnetic field, heat and mass transfer. The modeling equations are converted to dimensionless equations then solved through Galerkin finite element method and discussed in the flow distributions with the help of MATLAB. Numerical results for the velocity, temperature and concentration distributions as well as the skin-friction coefficient, Nusselt number and Sherwood number are discussed in detail and displayed graphically More >

  • Open Access

    ARTICLE

    A Comparative Study of Different Drying Processes for a Deformable Saturated Porous Medium

    Nour El Houda Ben Mustaphaa1,3,*, Ibtissem Boumnijel1, M. El-Ganaoui2, Daoued Mihoubi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1339-1348, 2023, DOI:10.32604/fdmp.2023.022888 - 30 January 2023

    Abstract Drying of a deformable saturated porous medium based on convective tempering is a novel method that can enhance energy efficiency and the quality of the dried product itself. In this experimental investigation, the performances of this specific technique are compared with those of a standard stationary drying process in terms of deformation, drying kinetics, moisture redistribution, and energy consumption. In particular, the response of a deformable saturated porous medium (Kaolin) is considered. The results are critically discussed pointing out advantages and drawbacks. More > Graphic Abstract

    A Comparative Study of Different Drying Processes for a Deformable Saturated Porous Medium

  • Open Access

    ARTICLE

    Analysis of a Stagnation Point Flow with Hybrid Nanoparticles over a Porous Medium

    U. S. Mahabaleshwar1, T. Anusha1 and M. Hatami2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 541-567, 2023, DOI:10.32604/fdmp.2022.022002 - 29 August 2022

    Abstract The unsteady stagnation-point flow of a hybrid nanofluid over a stretching/shrinking sheet embedded in a porous medium with mass transpiration and chemical reactions is considered. The momentum and mass transfer problems are combined to form a system of partial differential equations, which is converted into a set of ordinary differential equations via similarity transformation. These ordinary differential equations are solved analytically to obtain the solution for velocity and concentration profiles in exponential and hypergeometric forms, respectively. The concentration profile is obtained for four different cases namely constant wall concentration, uniform mass flux, general power law More >

Displaying 1-10 on page 1 of 74. Per Page