Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    Performance Evaluation of an Evaporative Cooling Pad for Humidification -Dehumidification Desalination

    Ibtissam El Aouni, Hicham Labrim, Elhoussaine Ouabida, Ahmed Ait Errouhi, Rachid El Bouayadi, Driss Zejli, Aouatif Saad*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2323-2335, 2024, DOI:10.32604/fdmp.2024.050611 - 23 September 2024

    Abstract The perfect combination of renewable energy and desalination technologies is the key to meeting water demands in a cost-effective, efficient and environmentally friendly way. The desalination technique by humidification-dehumidification is non-conventional approach suitable for areas with low infrastructure (such as rural and decentralized regions) since it does not require permanent maintenance. In this study, this technology is implemented by using solar energy as a source of thermal power. A seawater desalination unit is considered, which consists of a chamber with two evaporators (humidifiers), a wetted porous material made of a corrugated cellulose cardboard and a… More >

  • Open Access

    ARTICLE

    Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Composite in Low Frequencies: A Numerical Study Using FEM

    Mohammad Javad SheikhMozafari*

    Sound & Vibration, Vol.58, pp. 81-100, 2024, DOI:10.32604/sv.2024.048897 - 27 February 2024

    Abstract Mitigating low-frequency noise poses a significant challenge for acoustic engineers, due to their long wavelength, with conventional porous sound absorbers showing limitations in attenuating such noise. An effective strategy involves combining porous materials with micro-perforated plates (MPP) to address this issue. Given the significant impact of structural variables like panel thickness, hole diameter, and air gap on the acoustic characteristics of MPP, achieving the optimal condition demands numerous sample iterations. The impedance tube’s considerable expense for sound absorption measurement and the substantial cost involved in fabricating each sample using a 3D printer underscore the advantage… More > Graphic Abstract

    Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Composite in Low Frequencies: A Numerical Study Using FEM

  • Open Access

    ARTICLE

    Parameter Study on a Composite Sound-Absorbing Structure Liner in Elevator Shafts

    Ting Qu, Bo Wang, Hequn Min*

    Journal of Renewable Materials, Vol.11, No.9, pp. 3433-3446, 2023, DOI:10.32604/jrm.2023.027136 - 20 July 2023

    Abstract With the growing global environmental awareness, the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic development. This paper proposed a novel eco-friendly sound absorbing structure (NSAS) liner for noise reduction in elevator shafts. The base layer integrated with the shaft walls is a damping gypsum mortarboard, and a rock wool board and a perforated cement mortarboard are used to compose the NSAS. Based on the acoustic impedance theory of porous materials and perforated panels, the sound absorption theory of the NSAS was… More >

  • Open Access

    ARTICLE

    Preparation of Porous Materials Derived from Waste Mussel Shell with High Removal Performance for Tableware Oil

    Yi Yang1, Zhaodi Wu1, Lili Ji2, Shiyao Lu2, Hua Jing2, Jiaxing Sun2, Jian Guo1, Wendong Song3, Yaning Wang2, Lu Cai4,*

    Journal of Renewable Materials, Vol.9, No.11, pp. 1869-1881, 2021, DOI:10.32604/jrm.2021.015952 - 04 June 2021

    Abstract In this work, carbonized mussel shell powder (CMSP) was modified by alkyl polyglucosides (APG) and rhamnolipid (RL) to render porous biomass a lipophilic surface, which was innovatively utilized as an environmentally friendly tableware cleaning material. The modified method was two-step hydrotherm-assisted synthesis. A contact angle meter was used to determine the surface hydrophobic property of modified samples (MTAR). The pore and the surface structure of CMSP and MTAR were characterized by BET, SEM, XRD, FTIR and XPS. The effect of removing oil was tested by gravimetric method. The results showed that the surface of MTAR More > Graphic Abstract

    Preparation of Porous Materials Derived from Waste Mussel Shell with High Removal Performance for Tableware Oil

  • Open Access

    ARTICLE

    Statistical Multiscale Analysis of Transient Conduction and Radiation Heat Transfer Problem in Random Inhomogeneous Porous Materials

    Yiqiang Li1, Liang Ma2, Zhiqiang Yang3, Xiaofei Guan4, Yufeng Nie1, Zihao Yang1, 2

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.1, pp. 1-24, 2018, DOI:10.3970/cmes.2018.115.001

    Abstract This paper is devoted to the homogenization and statistical multiscale analysis of a transient heat conduction problem in random porous materials with a nonlinear radiation boundary condition. A novel statistical multiscale analysis method based on the two-scale asymptotic expansion is proposed. In the statistical multiscale formulations, a unified linear homogenization procedure is established and the second-order correctors are introduced for modeling the nonlinear radiative heat transfer in random perforations, which are our main contributions. Besides, a numerical algorithm based on the statistical multiscale method is given in details. Numerical results prove the accuracy and efficiency More >

  • Open Access

    ARTICLE

    Statistical Second-order Two-scale Method for Nonstationary Coupled Conduction-Radiation Heat Transfer Problem of Random Porous Materials

    Zhiqiang Yang1, Yufeng Nie2, Yatao Wu2, Zihao Yang2, Yi Sun1

    CMC-Computers, Materials & Continua, Vol.43, No.1, pp. 21-48, 2014, DOI:10.3970/cmc.2014.043.021

    Abstract This paper develops a novel statistical second-order two-scale (SSOTS) method to predict the heat transfer performances of three-dimensional (3D) porous materials with random distribution. Firstly, the mesoscopic configuration for the structure with random distribution is briefly characterized Secondly, the SSOTS formulas for calculating effective thermal conductivity parameters, temperature field and heat flux densities are derived by means of construction way. Then, the algorithm procedure based on the SSOTS method is described in details. Finally, numerical results for porous materials with varying probability distribution models are calculated by SSOTS algorithm, and compared with the data by More >

  • Open Access

    ARTICLE

    Characterization and modeling of the multiscale pore structures for porous materials

    X.F. Guan1, X. Liu2, J.Z. Cui3

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.6, pp. 425-444, 2013, DOI:10.3970/cmes.2013.091.425

    Abstract In this paper, a stochastic geometrical modeling method for reconstructing three dimensional multiscale pore structures of porous materials is presented. In this method, the pore structure in porous materials is represented by a random but spatially correlated pore-network, in which the results of the Mercury Intrusion Porosimetry (MIP) experiment are used as the basic input information. Beside that, based on the Monte Carlo techniques, an effective computer generation algorithm is developed, and the quantities to evaluate the properties of porous materials are defined and described. Furthermore, numerical implementations are conducted based on experimental data afterwards. More >

  • Open Access

    ARTICLE

    Convective Film Condensation in an Inclined Channel with Porous Layer

    Lazhar Merouani1, Belkacem Zeghmati2, Azeddine Belhamri3

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 267-290, 2013, DOI:10.3970/fdmp.2013.009.267

    Abstract The present work is a numerical study of laminar film condensation from vapor-gas mixtures in an inclined channel with an insulated upper wall and an isothermal lower wall coated with a thin porous material. A two-dimensional model is developed using a set of complete boundary layer equations for the liquid film and the steam-air mixture while the Darcy-Brinkman-Forchheimer approach is used for the porous material. The governing equations are discretized with an implicit finite difference scheme. The resulting systems of algebraic equations are numerically solved using Gauss and Thomas algorithms. The numerical results enable to More >

  • Open Access

    ARTICLE

    The Second-Order Two-Scale Method for Heat Transfer Performances of Periodic Porous Materials with Interior Surface Radiation

    Zhiqiang Yang1, Junzhi Cui2, Yufeng Nie1, Qiang Ma2

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.5, pp. 419-442, 2012, DOI:10.3970/cmes.2012.088.419

    Abstract In this paper, a new second-order two-scale (SOTS) method is developed to predict heat transfer performances of periodic porous materials with interior surface radiation. Firstly, the second-order two-scale formulation for computing temperature field of the problem is given by means of construction way. Then, the error estimation of the second-order two-scale approximate solution is derived on some regularity hypothesis. Finally, the corresponding finite element algorithms are proposed and some numerical results are presented. They show that the SOTS method in this paper is feasible and valid for predicting the heat transfer performances of periodic porous More >

  • Open Access

    ARTICLE

    T-Trefftz Voronoi Cell Finite Elements with Elastic/Rigid Inclusions or Voids for Micromechanical Analysis of Composite and Porous Materials

    L. Dong1, S. N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.2, pp. 183-220, 2012, DOI:10.32604/cmes.2012.083.183

    Abstract In this paper, we develop T-Trefftz Voronoi Cell Finite Elements (VCF -EM-TTs) for micromechanical modeling of composite and porous materials. In addition to a homogenous matrix in each polygon-shaped element, three types of arbitrarily-shaped heterogeneities are considered in each element: an elastic inclusion, a rigid inclusion, or a void. In all of these three cases, an inter-element compatible displacement field is assumed along the element outer-boundary, and interior displacement fields in the matrix as well as in the inclusion are independently assumed as T-Trefftz trial functions. Characteristic lengths are used for each element to scale… More >

Displaying 1-10 on page 1 of 14. Per Page