Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Optimizing Heat Sink Performance by Replacing Fins from Solid to Porous inside Various Enclosures Filled with a Hybrid Nanofluid

    Ahmed Dhafer Abdulsahib1,*, Dhirgham Alkhafaji1, Ibrahim M. Albayati2

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1777-1804, 2024, DOI:10.32604/fhmt.2024.057209 - 19 December 2024

    Abstract The current study generally aims to improve heat transfer in heat sinks by presenting a numerical analysis of natural convection of an enclosure with hot right and cool left walls, and thermally insulated top and bottom walls. The cold wall included configurations (half circle/half square) in various sizes (S = 0.1, 0.2, and 0.3), numbers (N = 1, 2, 3, and 4), and locations (C = 0.35, and 0.65). A heat sink is constructed of Aluminum attached to the hot wall, and composed of five fins with protrusions. Fins of the heat sink will be… More > Graphic Abstract

    Optimizing Heat Sink Performance by Replacing Fins from Solid to Porous inside Various Enclosures Filled with a Hybrid Nanofluid

  • Open Access

    ARTICLE

    Application of Metaheuristic Algorithms for Optimizing Longitudinal Square Porous Fins

    Samer H. Atawneh1, Waqar A. Khan2, Nawaf N. Hamadneh3,*, Adeeb M. Alhomoud3

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 73-87, 2021, DOI:10.32604/cmc.2021.012351 - 12 January 2021

    Abstract The objectives of this study involve the optimization of longitudinal porous fins of square cross-section using metaheuristic algorithms. A generalized nonlinear ordinary differential equation is derived using Darcy and Fourier’s laws in the energy balance around a control volume and is solved numerically using RFK 45 method. The temperature of the base surface is higher than the fin surface, and the fin tip is kept adiabatic or cooled by convection heat transfer. The other pertinent parameters include Rayleigh number (100 ≤ Ra ≤ 104), Darcy number, (10−4 ≤ Da ≤ 10−2), relative thermal conductivity ratio of solid phase to fluid (1000 ≤ kr ≤ 8000), Nusselt number (10 ≤ Nu ≤ 100), More >

  • Open Access

    ARTICLE

    THERMAL ANALYSIS OF NATURAL CONVECTION AND RADIATION HEAT TRANSFER IN MOVING POROUS FINS

    Partner L. Ndlovua,b,∗, Raseelo J. Moitshekia,†

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-8, 2019, DOI:10.5098/hmt.12.7

    Abstract In this article, the Differential Transform Method (DTM) is used to perform thermal analysis of natural convective and radiative heat transfer in moving porous fins of rectangular and exponential profiles. This study is performed using Darcy’s model to formulate the governing heat transfer equations. The effects of porosity parameter, irregular profile and other thermo-physical parameters, such as Peclet number and the radiation parameter are also analyzed. The results show that the fin rapidly dissipates heat to the surrounding temperature with an increase in the values of the porosity parameter and the dimensionless time parameter. The More >

Displaying 1-10 on page 1 of 3. Per Page