Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (255)
  • Open Access

    ARTICLE

    Unsteady Flow of Hybrid Nanofluid with Magnetohydrodynamics- Radiation-Natural Convection Effects in a U-Shaped Wavy Porous Cavity

    Taher Armaghani1, Lioua Kolsi2, Najiyah Safwa Khashi’ie3,*, Ahmed Muhammed Rashad4, Muhammed Ahmed Mansour5, Taha Salah6, Aboulbaba Eladeb7

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2225-2251, 2024, DOI:10.32604/cmes.2024.056676 - 31 October 2024

    Abstract In this paper, the unsteady magnetohydrodynamic (MHD)-radiation-natural convection of a hybrid nanofluid within a U-shaped wavy porous cavity is investigated. This problem has relevant applications in optimizing thermal management systems in electronic devices, solar energy collectors, and other industrial applications where efficient heat transfer is very important. The study is based on the application of a numerical approach using the Finite Difference Method (FDM) for the resolution of the governing equations, which incorporates the Rosseland approximation for thermal radiation and the Darcy-Brinkman-Forchheimer model for porous media. It was found that the increase of Hartmann number… More >

  • Open Access

    ARTICLE

    Artificial Intelligence-Driven FVM-ANN Model for Entropy Analysis of MHD Natural Bioconvection in Nanofluid-Filled Porous Cavities

    Noura Alsedais1, Mohamed Ahmed Mansour2, Abdelraheem M. Aly3, Sara I. Abdelsalam4,5,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1277-1307, 2024, DOI:10.32604/fhmt.2024.056087 - 30 October 2024

    Abstract The research examines fluid behavior in a porous box-shaped enclosure. The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle. Natural circulation driven by biological factors is investigated. The analysis combines a traditional numerical approach with machine learning techniques. Mathematical equations describing the system are transformed into a dimensionless form and then solved using computational methods. The artificial neural network (ANN) model, trained with the Levenberg-Marquardt method, accurately predicts values, showing high correlation (R = 1), low mean squared error (MSE), and minimal error clustering. Parametric analysis reveals significant… More >

  • Open Access

    ARTICLE

    Magneto-Hydro-Convective Nanofluid Flow in Porous Square Enclosure

    B. Ould Said1, F. Mebarek-Oudina2,*, M. A. Medebber3

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1343-1360, 2024, DOI:10.32604/fhmt.2024.054164 - 30 October 2024

    Abstract In this work, a steady mixed convection in a two-dimensional enclosure filled viananoliquid Cu/H2O through a porous medium was numerically analyzed. The nanoliquid flow is designated utilizing the Brinkman-Forchheimer model. The upper and the bottom horizontal walls are considered to be hot (Th) and cold temperature (Tc), respectively, whereas the other walls are thermally insulated. The impact of various dimensionless terms such as the Grashof number (Gr) in the ranges (0.01–20), the Reynolds number (Re) in the ranges (50–500), the Hartman number (Ha) in the ranges (0–20), and three different location cases (0.25, 0.5, and More >

  • Open Access

    ARTICLE

    Modeling of the Adsorption Allowing for the Changing Adsorbent Activity at Various Stages of the Process

    Marat Satayev1,2,*, Abdugani Azimov2, Arnold Brener2, Nina Alekseyeva1, Zulfia Shakiryanova2

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1533-1558, 2024, DOI:10.32604/fhmt.2024.052901 - 30 October 2024

    Abstract The goal of this work is, first of all, to construct a mathematical model of the mass transfer process in porous adsorption layers, taking into account the fact that in most cases the adsorption process is carried out in non-stationary technological modes, which requires a clear description of its various stages. The scientific contribution of the novel model is based on a probability approach allowing for deriving a differential equation that takes into account the diffusion migration of adsorbed particles. Solving this equation allows us to calculate the reduced degree of the adsorption surface coverage… More >

  • Open Access

    ARTICLE

    Why Sustainable Porous Carbon Should be Further Explored as Radar-Absorbing Material? A Comparative Study with Different Nanostructured Carbons

    Alan F.N. Boss1, Manuella G.C. Munhoz1, Gisele Amaral-Labat2, Rodrigo G.A. Lima2, Leonardo I. Medeiros2,3, Nila C.F.L. Medeiros2,3, Beatriz C.S. Fonseca2, Flavia L. Braghiroli4,*, Guilherme F.B. Lenz e Silva1

    Journal of Renewable Materials, Vol.12, No.10, pp. 1639-1659, 2024, DOI:10.32604/jrm.2024.056004 - 23 October 2024

    Abstract Radar Absorbing Materials (RAM) are a class of composites that can attenuate incident electromagnetic waves to avoid radar detection. Most carbon allotropes that have the potential to be used as RAM are either carbon nanotubes (CNTs), graphene, carbon black (CB) and ultimately, sustainable porous carbon (SPC). Here, black wattle bark waste (following tannin extraction) was used as a sustainable source to produce SPC made from biomass waste. It was characterized and used as a filler for a silicone rubber matrix to produce a flexible RAM. The electromagnetic performance of this composite was compared with composites… More >

  • Open Access

    PROCEEDINGS

    Design and Fabrication of Porous Lithium-Containing Ceramic Tritium Breeders for Fusion Reactors

    Jili Cai1, Junyi Zhou1, Hangyu Chen1, Liang Huang1, Wenming Jiang1, Jie Liu1, Zhongwei Li1, Chao Cai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011946

    Abstract Effectively obtaining tritium is one of the essential issues to realize commercial and controlled nuclear fusion [1]. Conventional lithium-containing ceramic tritium breeders with pebble bed configurations in fusion reactors have shown insurmountable structural drawbacks weakening tritium extraction, including inherently low packing fractions, extensive stress concentrations, and low thermal conductivity. Therefore, extensive efforts have been devoted to enhancing tritium extraction by improving the design of tritium breeders and addressing structural drawbacks [2-4]. In this study, porous block configurations were proposed to replace conventional pebble bed configurations for the ceramic tritium breeder. Utilizing fluid-solid coupled heat transfer… More >

  • Open Access

    PROCEEDINGS

    A SPH Formulation for Coupled Thermal-Hydraulic-Mechanical Processes of Saturated Porous Media

    Wenhao Shen1,2,*, Moubin Liu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011418

    Abstract In this talk, we will present a SPH formulation for coupled Thermal-Hydraulic-Mechanical processes. The Biot’s theory is used to model the fluid-solid interaction of saturated porous media, the Fourier’s law and the Newton’s law of cooling are used to describe the thermal conduction in a single medium and the heat exchange between the fluid and the solid, respectively. The physical model is expressed in the initial reference, and the total Lagrangian SPH is used to build the discrete formulation. We will discuss the numerical instability induced by twice repeated derivatives of discontinuous physical quantities, and More >

  • Open Access

    PROCEEDINGS

    Multiscale Modeling and Application of Strain-Dependent Piezoresistive Behavior in Porous MWCNT/Polymer Nanocomposites

    Zefu Li1, Weidong Yang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011671

    Abstract For composite materials incorporating porous structures with multi-walled carbon nanotubes (MWCNTs), the effects of pores and MWCNT agglomeration significantly impact electrical conductivity. Theoretical modeling of the piezoresistive behavior is crucial for understanding the electromechanical response of porous MWCNT/polymer nanocomposites. Currently, there is limited theoretical modeling that considers the combined effects of porosity and MWCNT agglomeration on the electrical conductivity and piezoresistive performance of porous MWCNT/polymer composites. Addressing this gap, this paper presents a multiscale modeling approach for the strain-dependent piezoresistive behavior of porous MWCNT/polymer nanocomposites. The model considers the influence of porosity and MWCNT agglomeration, More >

  • Open Access

    ARTICLE

    Performance Evaluation of an Evaporative Cooling Pad for Humidification -Dehumidification Desalination

    Ibtissam El Aouni, Hicham Labrim, Elhoussaine Ouabida, Ahmed Ait Errouhi, Rachid El Bouayadi, Driss Zejli, Aouatif Saad*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2323-2335, 2024, DOI:10.32604/fdmp.2024.050611 - 23 September 2024

    Abstract The perfect combination of renewable energy and desalination technologies is the key to meeting water demands in a cost-effective, efficient and environmentally friendly way. The desalination technique by humidification-dehumidification is non-conventional approach suitable for areas with low infrastructure (such as rural and decentralized regions) since it does not require permanent maintenance. In this study, this technology is implemented by using solar energy as a source of thermal power. A seawater desalination unit is considered, which consists of a chamber with two evaporators (humidifiers), a wetted porous material made of a corrugated cellulose cardboard and a… More >

  • Open Access

    ARTICLE

    Enhanced Evaporation of Ternary Mixtures in Porous Medium with Microcolumn Configuration

    Bo Zhang1, Yunxie Huang2, Peilin Cui2, Zhiguo Wang1, Duo Ding1, Zhenhai Pan3, Zhenyu Liu2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 997-1016, 2024, DOI:10.32604/fhmt.2024.053592 - 30 August 2024

    Abstract The high surface area of porous media enhances its efficacy for evaporative cooling, however, the evaporation of pure substances often encounters issues including local overheating and unstable heat transfer. To address these challenges, a volume of fluid (VOF) model integrated with a species transport model was developed to predict the evaporation processes of ternary mixtures (water, glycerol, and 1,2-propylene glycol) in porous ceramics in this study. It reveals that the synergistic effects of thermal conduction and convective heat transfer significantly influence the mixtures evaporation, causing the fluctuations in evaporation rates. The obtained result shows a More >

Displaying 1-10 on page 1 of 255. Per Page