Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (298)
  • Open Access

    ARTICLE

    Novel Analysis of SiO2 + ZnO + MWCNT-Ternary Hybrid Nanofluid Flow in Electromagnetic Squeezing Systems

    Muhammad Hamzah1, Muhammad Ramzan2,*, Abdulrahman A. Almehizia3, Ibrahim Mahariq4,5,6,7,8,*, Laila A. Al-Essa9, Ahmed S. Hassan10

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.070435 - 29 January 2026

    Abstract The present investigation inspects the unsteady, incompressible MHD-induced flow of a ternary hybrid nanofluid made of SiO2 (silicon dioxide), ZnO (zinc oxide), and MWCNT (multi-walled carbon nanotubes) suspended in a water-ethylene glycol base fluid between two perforated squeezing Riga plates. This problem is important because it helps us understand the complicated connections between magnetic fields, nanofluid dynamics, and heat transport, all of which are critical for designing thermal management systems. These findings are especially useful for improving the design of innovative cooling technologies in electronics, energy systems, and healthcare applications. No prior study has… More >

  • Open Access

    ARTICLE

    Three-Dimensional Hybrid Model for Wave Interaction with Porous Layer

    Divya Ramesh, Sriram Venkatachalam*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.069854 - 29 January 2026

    Abstract A hybrid model combining Fully Non-Linear Potential Flow Theory (FNPT) based on the Finite Element Method (FEM) and the Unified Navier-Stokes equation, using the 3D Improved Meshless Local Petrov Galerkin method with Rankine Source (IMLPG_R), is developed to study wave interactions with a porous layer. In previous studies, the above formulations are applied to wave interaction with fixed cylindrical structures. The present study extends this framework by integrating a unified governing equation within the hybrid modeling approach to capture the dynamics of wave interaction with porous media. The porous layers are employed to replicate the… More >

  • Open Access

    REVIEW

    Thermal Insulation Performance of Natural Fibre-Reinforced Composites—A Comprehensive Review

    Raviduth Ramful*

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0116 - 23 January 2026

    Abstract Typically used thermal insulation materials such as foam insulation and fibreglass may pose notable health risks and environmental impacts thereby resulting in respiratory irritation and waste disposal issues, respectively. While these materials are affordable and display good thermal insulation, their unsustainable traits pertaining to an intensive manufacturing process and poor disposability are major concerns. Alternative insulation materials with enhanced sustainable characteristics are therefore being explored, and one type of material which has gained notable attention owing to its low carbon footprint and low thermal conductivity is natural fibre. Among the few review studies conducted on… More > Graphic Abstract

    Thermal Insulation Performance of Natural Fibre-Reinforced Composites—A Comprehensive Review

  • Open Access

    PROCEEDINGS

    Highly Efficient and Stable Catalysts Customized by Ultrafast-Laser in Porous Crystals

    Shuailong Guo*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012841

    Abstract The loading capacity, spatial arrangement, and structural stability of monatomic catalysts have significant effects on their performance. Traditional physical and chemical methods cannot precisely control the adsorption, reduction, and anchoring of metal salt ions, making it challenging to achieve accurate synthesis of metal single atoms in three-dimensional space. This project aims to use porous crystal materials as the adsorption carrier for metal salt ions and lasers as the energy source for accurate reduction. This approach facilitates the precise synthesis and customization of single atoms in multidimensional space. By designing the pore size, morphology, particle size,… More >

  • Open Access

    ARTICLE

    Experimental Study on the Flow Boiling of R134a in Sintered Porous Microchannels

    Shuo Wang1,2,*, Huiming Wang1,2, Ying Zhang1,2, Zhiqiang Zhang1,3, Li Jia1,2

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1721-1740, 2025, DOI:10.32604/fhmt.2025.073226 - 31 December 2025

    Abstract This experimental investigation was conducted on the flow boiling performance of refrigerant R134a in two types of parallel microchannels: sintered porous microchannels (PP-MCs) and smooth parallel microchannels (SP-MCs). The tests were performed under controlled conditions including an inlet subcooling of 5 ± 0.2°C, saturation temperature of 33°C, mass fluxes of 346 and 485 kg/m2·s, and a range of heat fluxes. Key findings reveal that the sintered porous microstructure significantly enhances bubble nucleation, reducing the wall superheat required for the onset of nucleate boiling (ONB) to only 0.13°C compared to 2.2°C in smooth channels. The porous structure… More >

  • Open Access

    ARTICLE

    Semi Analytical Solution of MHD and Heat Transfer of Couple Stress Fluid over a Stretching Sheet with Radiation in Porous Medium

    Sara I. Abdelsalam1,2,*, M. Khairy3, W. Abbas3, Ahmed M. Megahed4, M. S. Emam5

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1833-1846, 2025, DOI:10.32604/fhmt.2025.069711 - 31 December 2025

    Abstract This comprehensive research examines the dynamics of magnetohydrodynamic (MHD) flow and heat transfer within a couple stress fluid. The investigation specifically focuses on the fluid’s behavior over a vertical stretching sheet embedded within a porous medium, providing valuable insights into the complex interactions between fluid mechanics, thermal transport, and magnetic fields. This study accounts for the significant impact of heat generation and thermal radiation, crucial factors for enhancing heat transfer efficiency in various industrial and technological contexts. The research employs mathematical techniques to simplify complex partial differential equations (PDEs) governing fluid flow and heat transfer.… More >

  • Open Access

    ARTICLE

    Enhancement of performance CdxPb1-xS / porous silicon heterojunction photodetector by chemical spray pyrolysis method

    S. I. Aziz, G. G. Ali*

    Chalcogenide Letters, Vol.22, No.3, pp. 239-253, 2025, DOI:10.15251/CL.2025.223.239

    Abstract This work investigates the photodetector characteristics of lead and cadmium sulfide thin films deposited on porous silicon heterojunction at composites (x=0,0.25,0.5,0.75,1). The characteristics of all deposited samples were estimated by X-ray diffraction (XRD), highresolution scanning electron microscope (FESEM), Energy-dispersive X-ray (EDX), I-V measurements, and photodetector properties. PbS and CdS thin films have been successful, and photodetector properties on the porous silicon surface have performed well using the chemical spray method. An X-ray confirmed that the prepared samples have a crystalline phase structure. Besides, the results indicate that the PbS and CdS thin films have cubic… More >

  • Open Access

    ARTICLE

    Effect of porosity of mesoporous silicon substrates on CdS thin films deposited by chemical bath deposition

    F. Sakera,*, L. Remachea, D. Belfennacheb, K. R. Cheboukia, R. Yekhlefb

    Chalcogenide Letters, Vol.22, No.2, pp. 151-166, 2025, DOI:10.15251/CL.2025.222.151

    Abstract In this work the chemical bath deposition (CBD) method was used to synthesize Cadmium sulphide (CdS) thin films on glass, silicon (Si), and porous silicon (PSi) substrates. The PSi substrates were prepared by an electrochemical etching method using different current densities at constant etching time of 5 minutes. The CdS thin films were characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical transmittance spectroscopy in the Uv visible range, and electrical characterization (I–V characteristics). The obtained results demonstrated that the morphology of the deposited materials was influenced by the… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Prediction of Seepage Flow in Soil-Like Porous Media

    Zhenzhen Shen1,2, Kang Yang2, Dengfeng Wei2, Quansheng Liang2, Zhenpeng Ma2, Hong Wang2, Keyu Wang2, Chunwei Zhang2, Xiaohu Yang3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2741-2760, 2025, DOI:10.32604/fdmp.2025.070395 - 01 December 2025

    Abstract The rapid prediction of seepage mass flow in soil is essential for understanding fluid transport in porous media. This study proposes a new method for fast prediction of soil seepage mass flow by combining mesoscopic modeling with deep learning. Porous media structures were generated using the Quartet Structure Generation Set (QSGS) method, and a mesoscopic-scale seepage calculation model was applied to compute flow rates. These results were then used to train a deep learning model for rapid prediction. The analysis shows that larger average pore diameters lead to higher internal flow velocities and mass flow More >

  • Open Access

    ARTICLE

    Simulation of Dynamic Evolution for Oil-in-Water Emulsion Demulsification Controlled by the Porous Media and Shear Action

    Heping Wang1,*, Ying Lu1, Yanggui Li2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 391-410, 2025, DOI:10.32604/cmes.2025.069763 - 30 October 2025

    Abstract With oily wastewater treatment emerging as a critical global issue, porous media and shear forces have received significant attention as environmentally friendly methods for oil–water separation. This study systematically simulates the dynamics of oil-in-water emulsion demulsification under porous media and shear forces using a color-gradient Lattice Boltzmann model. The morphological evolution and demulsification efficiency of emulsions are governed by porous media and shear forces. The effects of porosity and shear velocity on demulsification are quantitatively analyzed. (1) The presence of porous media enhances the ability of the flow field to trap oil droplets, with lower More >

Displaying 1-10 on page 1 of 298. Per Page