Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    MCPSFOA: Multi-Strategy Enhanced Crested Porcupine-Starfish Optimization Algorithm for Global Optimization and Engineering Design

    Hao Chen1, Tong Xu1, Yutian Huang2, Dabo Xin1,*, Changting Zhong1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075792 - 29 January 2026

    Abstract Optimization problems are prevalent in various fields of science and engineering, with several real-world applications characterized by high dimensionality and complex search landscapes. Starfish optimization algorithm (SFOA) is a recently optimizer inspired by swarm intelligence, which is effective for numerical optimization, but it may encounter premature and local convergence for complex optimization problems. To address these challenges, this paper proposes the multi-strategy enhanced crested porcupine-starfish optimization algorithm (MCPSFOA). The core innovation of MCPSFOA lies in employing a hybrid strategy to improve SFOA, which integrates the exploratory mechanisms of SFOA with the diverse search capacity of… More >

  • Open Access

    ARTICLE

    Improved Harris Hawks Algorithm and Its Application in Feature Selection

    Qianqian Zhang1, Yingmei Li1,*, Jianjun Zhan2,*, Shan Chen1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1251-1273, 2024, DOI:10.32604/cmc.2024.053892 - 15 October 2024

    Abstract This research focuses on improving the Harris’ Hawks Optimization algorithm (HHO) by tackling several of its shortcomings, including insufficient population diversity, an imbalance in exploration vs. exploitation, and a lack of thorough exploitation depth. To tackle these shortcomings, it proposes enhancements from three distinct perspectives: an initialization technique for populations grounded in opposition-based learning, a strategy for updating escape energy factors to improve the equilibrium between exploitation and exploration, and a comprehensive exploitation approach that utilizes variable neighborhood search along with mutation operators. The effectiveness of the Improved Harris Hawks Optimization algorithm (IHHO) is assessed by… More >

  • Open Access

    ARTICLE

    Self-Adaptive Differential Evolution Based on the Concept of Population Diversity Applied to Simultaneous Estimation of Anisotropic Scattering Phase Function, Albedo and Optical Thickness

    F. S. Lobato1, V. Steffen Jr2, A. J. Silva Neto3

    CMES-Computer Modeling in Engineering & Sciences, Vol.69, No.1, pp. 1-18, 2010, DOI:10.3970/cmes.2010.069.001

    Abstract Differential Evolution Algorithm (DE) has shown to be a powerful evolutionary algorithm for global optimization in a variety of real world problems. DE differs from other evolutionary algorithms in the mutation and recombination phases. Unlike some other meta-heuristic techniques such as genetic algorithms and evolutionary strategies, where perturbation occurs in accordance with a random quantity, DE uses weighted differences between solution vectors to perturb the population. Although the efficiency of DE algorithm has been proven in the literature, studies indicate that the efficiency of the DE methods is sensitive to its control parameters (perturbation rate More >

Displaying 1-10 on page 1 of 3. Per Page