Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    REVIEW

    Plant Oil-Based Waterborne Polyurethanes: A Brief Review

    Verónica L. Mucci1, M. E. Victoria Hormaiztegui2, Mirta I. Aranguren1,*

    Journal of Renewable Materials, Vol.8, No.6, pp. 579-601, 2020, DOI:10.32604/jrm.2020.09455

    Abstract The increasing pressure from consumers and policy makers to reduce the use of synthetic polymers, whose production contributes to the depletion of non-renewable resources and are usually non- biodegradable, has prompted the efforts to find suitable bio-based sources for the production of polymers. Vegetable oils have been a frequently spotted in this search because they are versatile, highly available and a low cost liquid biosource, which can be used in the synthesis of a wide plethora of different polymers and reactive monomers. Following the same idea of reducing the environmental stress, the traditional polyurethanes that are soluble in organic solvents… More >

  • Open Access

    Synthesis of Novel Biobased Polyol via Thiol-Ene Chemistry for Rigid Polyurethane Foams

    N. Elbers1, C. K. Ranaweera1, M. Ionescu2, X. Wan2, P. K. Kahol3, Ram K. Gupta1,2*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 74-83, 2017, DOI:10.7569/JRM.2017.634137

    Abstract The objective of this research is to prepare rigid polyurethane (PU) foams from α-phellandrene, a biobased compound. Two types of polyols were synthesized by reacting α-phellandrene with 2-mercaptoethanol and α-thioglycerol via thiol-ene chemistry route. The completion of the reaction was identified by using FTIR. PU foams from α-phellandrene polyols and commercial polyol were compared with regard to foam characteristics and properties. All the PU foams showed apparent density of 28–39 kg/m3 with closed-cell content above 90%. The highest glass transition temperature of 229 °C and compressive strength of 220 kPa were observed for the polyol synthesized by reacting α-phellandrene and… More >

  • Open Access

    Biobased Polyols Using Thiol-Ene Chemistry for Rigid Polyurethane Foams with Enhanced Flame-Retardant Properties

    C. K. Ranaweera1, M. Ionescu2, N. Bilic2, X. Wan2, P. K. Kahol3, Ram K. Gupta1,2*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 1-12, 2017, DOI:10.7569/JRM.2017.634105

    Abstract Biobased polyol was synthesized using 1-thioglycerol and limonene, an extract of orange peel, via thiol-ene chemistry as an alternative to petrochemical-based polyol for preparation of rigid polyurethane foams (RPFs). Fire-retardant polyurethane foams were prepared by addition of different amounts of dimethyl methyl phosphonate (DMMP) in the polyol. The effect of DMMP on the properties of RPFs was studied. All the biobased RPFs maintained a regular cell structure with uniform cell distribution and over 90% of closed cell. The RPFs showed excellent compressive strength of ~230 kPa without addition of DMMP. These RPFs almost retained their specific compressive strength even when… More >

  • Open Access

    REVIEW

    Tannin-Based Biofoams-A Review

    Antonio Pizzi*

    Journal of Renewable Materials, Vol.7, No.5, pp. 477-492, 2019, DOI:10.32604/jrm.2019.06511

    Abstract This review details the development of tannin-based biofoams for fire resistance and acoustic insulation and details the different varieties of these foams that have been developed, from tannin-furanic self-blowing foams to tannin-furanic polyurethanes and finally non-isocyanate tannin-based-carbohydrates polyurethanes (NIPU). More >

  • Open Access

    ARTICLE

    Glucose-Biobased Non-Isocyanate Polyurethane Rigid Foams

    Xuedong Xi1,2, A. Pizzi1,*, C. Gerardin3, Guanben Du2

    Journal of Renewable Materials, Vol.7, No.3, pp. 301-312, 2019, DOI:10.32604/jrm.2019.04174

    Abstract Glucose-based non-isocyanate polyurethanes (NIPU) were prepared by reaction of glucose with dimethyl carbonate and hexamethylene diamine. These were used to prepare partially biobased polyurethane foams by reaction with NaHCO3 as a blowing agent and addition of a silane coupling agent having different functions such as coreactant and adjuvant to obtain more uniform and smaller cells. The foams were foamed and hardened by applying heat. The foams presented very limited fire resistance indicating that as for synthetic polyurethane foams the eventual use of a fire retardant appears to be necessary. The 2 hours water absorption was used to indicate if close… More >

  • Open Access

    ARTICLE

    Impact of Natural Oil-Based Recycled Polyols on Properties of Cast Polyurethanes

    Hynek Beneš, Aleksandra Paruzel*, Jiří Hodan and Olga Trhlíková

    Journal of Renewable Materials, Vol.6, No.7, pp. 697-706, 2018, DOI:10.32604/JRM.2018.00011

    Abstract In this study, castor oil, rapeseed oil and medium chain triglycerides of coconut oil, were transesterified by means of 2-ethyl-2-hydroxymethyl-1,3-propanediol (trimethylolpropane) and consequently used to convert polycarbonate waste from end-of-life vehicles into liquid polyols. The prepared recycled polyols, composed uniquely of renewable and recycled components, had a hydroxyl number of ca. 250 mg KOH·g−1. They were successfully applied as 100% replacement of a virgin polyol for preparation of solid crosslinked polyurethanes (PU) by solvent-free casting. The produced rigid cast PU exhibited the main transition temperature ranging from 44°C to 53°C, the hardness value from 46 to 61 Shore D and… More >

  • Open Access

    ARTICLE

    Polyurethanes from Kraft Lignin without Using Isocyanates

    F.J. Santiago-Medina1, M.C. Basso1, A. Pizzi1,2,*, L. Delmotte3

    Journal of Renewable Materials, Vol.6, No.4, pp. 413-425, 2018, DOI:10.7569/JRM.2017.634172

    Abstract The reaction of a desulphurized kraft lignin with hexamethylene diamine and dimethyl carbonate has allowed the development of isocyanate-free polyurethane resins. The present research work is based on previous studies made with hydrolyzable and condensed tannins, but takes advantage of the higher number of hydroxyl groups present in lignin and their different aliphatic and aromatic character. The obtained materials were analyzed by Fourier transform infrared (FTIR) spectroscopy, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and solid-state cross-polarization/magic angle spinning (CP MAS) 13 C nuclear magnetic resonance (NMR), which have revealed the presence of urethane functions. The interpretation of the… More >

  • Open Access

    ARTICLE

    Biobased Aromatic-Aliphatic Polyols from Cardanol by Thermal Thiol-Ene Reaction

    Maha L. Shrestha1, Mihail Ionescu1*, Xianmei Wan1, Nikola Bilić1, Zoran S. Petrović1, Tom Upshaw2

    Journal of Renewable Materials, Vol.6, No.1, pp. 87-101, 2018, DOI:10.7569/JRM.2017.634153

    Abstract Cardanol is a natural phenol which is obtained from high vacuum distillation of cashew nut shell liquid. It contains a hydrocarbon chain of 15 carbon atoms in the meta position, either with one, two or three non-conjugated double bonds. This article describes thermal thiol-ene reaction to synthesize new cardanol-based polyols for polyurethanes with aromatic-aliphatic structure. Phenolic hydroxyl group was blocked by alkoxylation and 2-mercaptoethanol was added to the double bonds of propoxylated cardanol. The resultant product is a mixture of polyols that may contain one, two, three or four hydroxyl groups, as a function of the number of double bonds… More >

  • Open Access

    ARTICLE

    Impact of Polymerization Protocol on Structure-Property Relationships of Entirely Lipid-Derived Poly(ester urethane)s

    Shegufta Shetranjiwalla, Shaojun Li, Laziz Bouzidi, Suresh S. Narine*

    Journal of Renewable Materials, Vol.5, No.5, pp. 333-344, 2017, DOI:10.7569/JRM.2017.634102

    Abstract The impact of polymerization protocol on phase structure and properties of entirely lipid-derived thermoplastic poly(ester urethane)s (TPEU)s was investigated. The TPEUs were synthesized from 1,7-heptamethylene diisocyanate, polyester diols and 1,9-nonanediol (ND) as chain extender. A two-stage polymerization method was used to prepare two TPEUs; one in which ND was added in the first stage of polymerization as part of the prepolymer and another in the second stage after the prepolymer was formed. Two very different morphologies exhibiting different degrees of phase separation were obtained, driven by the sequence of addition of the chain extender. The incorporation of the chain extender… More >

  • Open Access

    ARTICLE

    Isocyanate-Free Polyurethanes by Coreaction of Condensed Tannins with Aminated Tannins

    M. Thébault1,2, A. Pizzi13*, F.J. Santiago-Medina1, F.M. Al-Marzouki3, S. Abdalla3

    Journal of Renewable Materials, Vol.5, No.1, pp. 21-29, 2017, DOI:10.7569/JRM.2016.634116

    Abstract Isocyanate-free polyurethane resins biosourced to a very high percentage level were prepared by the reaction of aminated mimosa tannin extract with commercial mimosa tannin extract prereacted with dimethyl carbonate. The reaction took place with ease at ambient temperature. Indications were that the polyurethanes obtained formed a hard film when cured at a temperature higher than 100 °C. Furthermore, the carbohydrate fraction of the tannin extract also appeared to be carbonated and reacted to generate isocyanate-free polyurethane linkages with the aminated tannins. This indicated that not only the polyphenolic fraction of the tannin extract, but also its other major component, can… More >

Displaying 11-20 on page 2 of 23. Per Page  

Share Link