Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Bio-Based Rigid Polyurethane Foams for Cryogenic Insulation

    Laima Vevere*, Beatrise Sture, Vladimir Yakushin, Mikelis Kirpluks, Ugis Cabulis

    Journal of Renewable Materials, Vol.12, No.3, pp. 585-602, 2024, DOI:10.32604/jrm.2024.047350 - 11 April 2024

    Abstract Cryogenic insulation material rigid polyurethane (PU) foams were developed using bio-based and recycled feedstock. Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled polyethylene terephthalate were used to develop rigid PU foam formulations. The 4th generation physical blowing agents with low global warming potential and low ozone depletion potential were used to develop rigid PU foam cryogenic insulation with excellent mechanical and thermal properties. Obtained rigid PU foams had a thermal conductivity coefficient as low as 0.0171 W/m·K and an apparent density of 37–40 kg/m3. The developed… More > Graphic Abstract

    Bio-Based Rigid Polyurethane Foams for Cryogenic Insulation

  • Open Access

    ARTICLE

    Hydrolysable Chestnut Tannin Extract Chemical Complexity in Its Reactions for Non-Isocyanate Polyurethanes (NIPU) Foams

    Elham Azadeh1, Antonio Pizzi1,2,*, Christine Gerardin-Charbonnier1,*, Philippe Gerardin1

    Journal of Renewable Materials, Vol.11, No.6, pp. 2823-2848, 2023, DOI:10.32604/jrm.2023.027651 - 27 April 2023

    Abstract Non-isocyanate polyurethane (NIPU) foams from a commercial hydrolysable tannin extract, chestnut wood tannin extract, have been prepared to determine what chemical species and products are taking part in the reactions involved. This method is based on two main steps: the reaction with dimethyl carbonate and the formation of urethane bonds by further reaction of the carbonated tannin with a diamine-like hexamethylene diamine. The hydroxyl groups on the tannin polyphenols and on the carbohydrates intimately linked with it and part of a hydrolysable tannin are the groups involved in these reactions. The carbohydrate skeleton of the… More > Graphic Abstract

    Hydrolysable Chestnut Tannin Extract Chemical Complexity in Its  Reactions for Non-Isocyanate Polyurethanes (NIPU) Foams

  • Open Access

    ARTICLE

    Effect of Amine Type on Lignin Modification to Evaluate Its Reactivity in Polyol Construction for Non-Isocyanate Polyurethanes (NIPU)

    Saeed Kazemi Najafi1, Farhood Najafi2, Antonio Pizzi3,*, Fatemeh Hassani Khorshidi1,*, Rabi Behrooz1

    Journal of Renewable Materials, Vol.11, No.5, pp. 2171-2189, 2023, DOI:10.32604/jrm.2023.027835 - 13 February 2023

    Abstract Polyols are groups of organic compounds which contain carbon and are randomly linked to other atoms, especially carbon-carbon and carbon-hydrogen. These compounds are mainly used as reactants to make other polymers. Among biopolymers, lignin is regarded as the base of a new polymer in polyol construction. The present study aimed to investigate the effects of amine type (diethylenetriamine and ethylenediamine) on the modification of lignin-based polyols, so as to provide an alternative to petroleum polyols and, in turn, increase functional groups and reduce their harm to humans’ health and the environment. To this aim, first,… More > Graphic Abstract

    Effect of Amine Type on Lignin Modification to Evaluate Its Reactivity in Polyol Construction for Non-Isocyanate Polyurethanes (NIPU)

  • Open Access

    ARTICLE

    Self-Blowing Non-Isocyanate Polyurethane Foams Based on Hydrolysable Tannins

    Elham Azadeh1, Xinyi Chen2, Antonio Pizzi2,*, Christine Gérardin1, Philip Gérardin1, Hisham Essawy3

    Journal of Renewable Materials, Vol.10, No.12, pp. 3217-3227, 2022, DOI:10.32604/jrm.2022.022740 - 14 July 2022

    Abstract Non-isocyanate polyurethane (NIPU) foams using a hydrolysable tannin, also vulgarly called tannic acid, namely here commercial chestnut wood tannin extract was prepared. Compression strength did not appear to depend on the foam apparent density while the formulation composition of the NIPU foams has been shown to be more determinant. These NIPU foams appeared to be self-extinguishing once the high temperature flame is removed. The ignition time gave encouraging results but for improved fire resistance the foams may need some fire-retardant addition. FTIR spectrometry showed the formation of non-isocyanate urethane linkages. Thermogravimetric analysis indicated a good More >

  • Open Access

    ARTICLE

    Feasibility Study of the Synthesis of Isocyanate-Free Polyurethanes from Catechin

    Wissem Sahmim1, Febrina Dellarose Boer1, Hubert Chapuis1, Firmin Obounou-Akong1, Antonio Pizzi2, Philippe Gérardin1, Christine Gérardin-Charbonnier1,*

    Journal of Renewable Materials, Vol.10, No.5, pp. 1175-1184, 2022, DOI:10.32604/jrm.2022.016365 - 22 December 2021

    Abstract With the current trend of increasing efforts to develop non-isocyanate-based polyurethanes (NIPUs), this study aimed to check the feasibility of the development of a method using cyclic carbonate modified catechin and amine to synthesis non-isocyanate urethane with the objective to further extend these results to polyurethane synthesis. The methods used in this study consist of four steps: glycidilation of catechin, hydrolysis of epoxide, cyclic carbonate synthesis, and carbamate synthesis through condensation of butylamine. The resulting products were analyzed using FTIR (Fourier transform infrared) spectroscopy and NMR (nuclear magnetic resonance) spectroscopy. The results showed that carbamate More > Graphic Abstract

    Feasibility Study of the Synthesis of Isocyanate-Free Polyurethanes from Catechin

  • Open Access

    ARTICLE

    Soy Protein Isolate Non-Isocyanates Polyurethanes (NIPU) Wood Adhesives

    Xinyi Chen1,2, Antonio Pizzi1,*, Xuedong Xi1,2, Xiaojian Zhou2, Emmanuel Fredon1, Christine Gerardin3

    Journal of Renewable Materials, Vol.9, No.6, pp. 1045-1057, 2021, DOI:10.32604/jrm.2021.015066 - 11 March 2021

    Abstract Soy-protein isolate (SPI) was used to prepare non-isocyanate polyurethane (NIPU) thermosetting adhesives for wood panels by reacting it with dimethyl carbonate (DMC) and hexamethylene diamine. Both linear as well as branched oligomers were obtained and identified, indicating how such oligomer structures could further cross-link to form a hardened network. Unusual structures were observed, namely carbamic acid-derived urethane linkages coupled with lactam structures. The curing of the adhesive was followed by thermomechanical analysis (TMA). It appeared to follow a two stages process: First, at a lower temperature (maximum 130°C), the growth of linear oligomers occurred, finally… More >

  • Open Access

    ARTICLE

    Organosolv Lignin for Non-Isocyanate Based Polyurethanes (NIPU) as Wood Adhesive

    Jaša Saražin1, Antonio Pizzi2, Siham Amirou2, Detlef Schmiedl3, Milan Šernek1,*

    Journal of Renewable Materials, Vol.9, No.5, pp. 881-907, 2021, DOI:10.32604/jrm.2021.015047 - 20 February 2021

    Abstract A non-isocyanate-based polyurethane (NIPU) wood adhesive was produced from organosolv lignin, which is a bio-sourced raw material, available in large quantities and produced as a by-product of the paper industry. The formulation of this new lignin-based NIPU adhesive, which is presented, was chemically characterised by Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI ToF) mass spectrometry and by Fourier Transform Infra-Red (FTIR) spectrometry analyses. The oligomers formed were determined and showed that the three species involved in the NIPU adhesive preparation were formed by the co-reaction of the three reagents used: lignin, dimethyl carbonate, and… More >

  • Open Access

    REVIEW

    Plant Oil-Based Waterborne Polyurethanes: A Brief Review

    Verónica L. Mucci1, M. E. Victoria Hormaiztegui2, Mirta I. Aranguren1,*

    Journal of Renewable Materials, Vol.8, No.6, pp. 579-601, 2020, DOI:10.32604/jrm.2020.09455 - 12 May 2020

    Abstract The increasing pressure from consumers and policy makers to reduce the use of synthetic polymers, whose production contributes to the depletion of non-renewable resources and are usually non- biodegradable, has prompted the efforts to find suitable bio-based sources for the production of polymers. Vegetable oils have been a frequently spotted in this search because they are versatile, highly available and a low cost liquid biosource, which can be used in the synthesis of a wide plethora of different polymers and reactive monomers. Following the same idea of reducing the environmental stress, the traditional polyurethanes that… More >

  • Open Access

    REVIEW

    Tannin-Based Biofoams-A Review

    Antonio Pizzi*

    Journal of Renewable Materials, Vol.7, No.5, pp. 477-492, 2019, DOI:10.32604/jrm.2019.06511

    Abstract This review details the development of tannin-based biofoams for fire resistance and acoustic insulation and details the different varieties of these foams that have been developed, from tannin-furanic self-blowing foams to tannin-furanic polyurethanes and finally non-isocyanate tannin-based-carbohydrates polyurethanes (NIPU). More >

  • Open Access

    ARTICLE

    Glucose-Biobased Non-Isocyanate Polyurethane Rigid Foams

    Xuedong Xi1,2, A. Pizzi1,*, C. Gerardin3, Guanben Du2

    Journal of Renewable Materials, Vol.7, No.3, pp. 301-312, 2019, DOI:10.32604/jrm.2019.04174 - 14 July 2021

    Abstract Glucose-based non-isocyanate polyurethanes (NIPU) were prepared by reaction of glucose with dimethyl carbonate and hexamethylene diamine. These were used to prepare partially biobased polyurethane foams by reaction with NaHCO3 as a blowing agent and addition of a silane coupling agent having different functions such as coreactant and adjuvant to obtain more uniform and smaller cells. The foams were foamed and hardened by applying heat. The foams presented very limited fire resistance indicating that as for synthetic polyurethane foams the eventual use of a fire retardant appears to be necessary. The 2 hours water absorption was More >

Displaying 1-10 on page 1 of 24. Per Page