Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    An Enhanced Jacobi Precoder for Downlink Massive MIMO Systems

    Park Chan-Yeob, Hyun-Ro Jae, Jun-Yong Jang, Song Hyoung-Kyu*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 137-148, 2021, DOI:10.32604/cmc.2021.016108 - 22 March 2021

    Abstract Linear precoding methods such as zero-forcing (ZF) are near optimal for downlink massive multi-user multiple input multiple output (MIMO) systems due to their asymptotic channel property. However, as the number of users increases, the computational complexity of obtaining the inverse matrix of the gram matrix increases. For solving the computational complexity problem, this paper proposes an improved Jacobi (JC)-based precoder to improve error performance of the conventional JC in the downlink massive MIMO systems. The conventional JC was studied for solving the high computational complexity of the ZF algorithm and was able to achieve parallel… More >

  • Open Access

    ABSTRACT

    Modified frame of Quasi Conforming and Application in Reissner-Mindlin Shell

    Ping Hu, Yang Xia, Limin Tang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.3, pp. 75-76, 2011, DOI:10.3970/icces.2011.017.075

    Abstract In this paper, a modified paradigm of quasi conforming finite element method with truncated polynomial expansions of in-domain displacements and derived expansions of strains is introduced. The purpose is to improve the drawbacks of the traditional one that neglecting the connections between the components of strain and lack of principle in the process of choosing polynomial expansions. Based on the modified framework a four-node quadrilateral flat shell element with complete quadratic polynomials for membrane and bending displacement fields is developed. Numerical tests are carried out for validation of the present element. The results show that More >

  • Open Access

    ABSTRACT

    Solving the Cauchy problem of nonlinear steady-state heat conduction equations by using the polynomial expansion method and the exponentially convergent scalar homotopy method (ECSHA)

    Weichung Yeih, Chia-Min Fan, Zen-Chin Chang,Chen-Yu Ku

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 43-44, 2011, DOI:10.3970/icces.2011.020.043

    Abstract In this paper, the Cauchy problem of the nonlinear steady-state heat conduction is solved by using the polynomial expansion method and the exponentially convergent scalar homotopy method (ECSHA). The nonlinearity involves the thermal dependent conductivity and mixed boundary conditions having radiation term. Unlike the regular boundary conditions, Cauchy data are given on part of the boundary and a sub-boundary without any information exists in the formulation. We assume that the solution for a two-dimensional problem can be expanded by polynomials as: where T is the temperature distribution, np is the maximum order of polynomial expansion,… More >

  • Open Access

    ARTICLE

    A Four-Node Reissner-Mindlin Shell with Assumed Displacement Quasi-Conforming Method

    Ping Hu1, Yang Xia1, Limin Tang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.73, No.2, pp. 103-136, 2011, DOI:10.3970/cmes.2011.073.103

    Abstract In this paper, an assumed displacement quasi-conforming finite element method with truncated polynomial expansions of in-domain displacements and derived expansions of strains is introduced. Based on the method a four-node quadrilateral flat shell element with complete quadratic polynomials for membrane and bending displacement fields is developed. Numerical tests are carried out for validation of the present element. The results show that the present element preserves all the advantages of the quasi-conforming i.e., explicit stiffness matrix, convenient post processing and free from membrane locking and shear locking. The tests also prove that the present element gives More >

Displaying 1-10 on page 1 of 4. Per Page