Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Body Temperature Programmable Shape Memory Thermoplastic Rubber

    Taoxi Wang1, Zhuo Liu1,2, Fu Jian1, Xing Shen1, Chen Wang1, Huwei Bian3, Tao Jiang3,*, Wei Min Huang4

    Journal of Polymer Materials, Vol.42, No.1, pp. 81-94, 2025, DOI:10.32604/jpm.2025.061047 - 27 March 2025

    Abstract This paper presents the development of a thermoplastic shape memory rubber that can be programmed at human body temperature for comfortable fitting applications. We hybridized commercially available thermoplastic rubber (TPR) used in the footwear industry with un-crosslinked polycaprolactone (PCL) to create two samples, namely TP6040 and TP7030. The shape memory behavior, elasticity, and thermo-mechanical response of these rubbers were systematically investigated. The experimental results demonstrated outstanding shape memory performance, with both samples achieving shape fixity ratios (Rf) and shape recovery ratios (Rr) exceeding 94%. TP6040 exhibited a fitting time of 80 s at body temperature (37°C), More >

  • Open Access

    ARTICLE

    The Accelerated Thermo-Oxidative Aging Characteristics of Wood Fiber/Polycaprolactone Composite: Effect of Temperature, Humidity and Time

    Shuang Si, Qian Tang, Xingong Li*

    Journal of Renewable Materials, Vol.9, No.12, pp. 2209-2222, 2021, DOI:10.32604/jrm.2021.015506 - 22 June 2021

    Abstract This study investigated the characteristics of wood fiber/polycaprolactone composite after an artificial accelerated thermo-oxidative aging treatment. The effect of time, temperature and humidity during the treatment on their mechanical, chemical and morphology properties were evaluated. The composite was prepared from melted wood fibers and modified polycaprolactone by a molding process. A temperature and humidity controllable test chamber was used for the thermo-oxidative aging of the composite. The thermo-oxidative aging caused surface of the composite to be much more rougher and even a few cracks and holes appeared on it. According to the spectra of Fourier… More > Graphic Abstract

    The Accelerated Thermo-Oxidative Aging Characteristics of Wood Fiber/Polycaprolactone Composite: Effect of Temperature, Humidity and Time

  • Open Access

    ARTICLE

    Enzymatic Synthesis of Polycaprolactone: Effect of Immobilization Mechanism of CALB on Polycaprolactone Synthesis

    Yasemin Kaptan, M.Sc.1,*, Yüksel Avcıbaşı-Güvenilir1

    Journal of Renewable Materials, Vol.6, No.6, pp. 619-629, 2018, DOI:10.32604/JRM.2018.00142

    Abstract Surface-modified rice husk ash was used as an inorganic support material for immobilization of Candida antarctica lipase B. (3-aminopropyl) trimethoxysilane was used for surface modification. Immobilization of CALB was performed via both physical adsorption and cross-linking. PCL synthesis was carried out by using these immobilized enzymes, free enzyme and Novozyme 435®. Molecular weight distribution of polymer samples was obtained by gel permeation chromatography (GPC) and chain structures of the polymer samples were observed by hydrogen nuclear magnetic resonance (1H-NMR). The highest monomer conversion is generally obtained by using cross-linked enzyme, around 90%. PDI values for More >

  • Open Access

    ARTICLE

    Tensile, Thermal and Morphological Characterization of Cocoa Bean Shells (CBS)/Polycaprolactone-Based Composites

    D. Puglia1*, F. Dominici1, M. Badalotti2, C. Santulli3, J.M. Kenny1

    Journal of Renewable Materials, Vol.4, No.3, pp. 199-205, 2016, DOI:10.7569/JRM.2016.634102

    Abstract In this work, cocoa bean shells (CBS), which were ground, then sieved to less than 150 μm and dried in a vacuum oven, have been introduced in a polycaprolactone (PCL) matrix in three different amounts, 10, 20 and 30% wt. The obtained composites were tested under tensile loading, which indicated an enhanced rigidity with a slight decrease of strength with respect to the neat polymer and a reduced elongation, particularly evident for composites with 30 wt% CBS, where final collapse took place for strains only slightly exceeding the yielding point. Differential scanning calorimetry (DSC) indicated More >

Displaying 1-10 on page 1 of 4. Per Page