Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Surface Morphology and Thermo-Electrical Energy Analysis of Polyaniline (PANI) Incorporated Cotton Fabric

    Md. Shohan Parvez1,2, Md. Mustafizur Rahman1,3,*, Mahendran Samykano1, Mohammad Yeakub Ali4

    Energy Engineering, Vol.121, No.1, pp. 1-12, 2024, DOI:10.32604/ee.2023.027472 - 27 December 2023

    Abstract With the exponential development in wearable electronics, a significant paradigm shift is observed from rigid electronics to flexible wearable devices. Polyaniline (PANI) is considered as a dominant material in this sector, as it is endowed with the optical properties of both metal and semiconductors. However, its widespread application got delineated because of its irregular rigid form, level of conductivity, and precise choice of solvents. Incorporating PANI in textile materials can generate promising functionality for wearable applications. This research work employed a straightforward in-situ chemical oxidative polymerization to synthesize PANI on Cotton fabric surfaces with varying dopant… More >

  • Open Access

    ARTICLE

    Separation Characteristics of Surface Modified Polysulfone Ultrafiltration Membrane using Oxidative Catalytic Polymerization of Aniline

    VRINDA GOEL1, RUCHIKA TANWAR1, AJOY KUMAR SAIKIA2, UTTAM KUMAR MANDAL1,*

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 283-305, 2022, DOI:10.32381/JPM.2022.39.3-4.8

    Abstract The commercially available Polysulfone (PSF) membrane surface was modified by solution polymerization of aniline using different oxidation catalysts i.e., FeCl3, CuCl2, and APS. Modified membranes were then characterized with respect to physio-chemical properties like surface chemistry, porosity, wettability, surface roughness, morphology, etc. It was observed that the hydrophilicity/ wettability of membranes was increased upon surface modification by polyaniline which again depended on the nature of the oxidation catalyst used. Membranes developed using FeCl3 and CuCl2 as oxidants exhibit improved permeation, protein rejection, and antifouling properties, whereas decrement was observed in modified membrane performance using APS as an More >

  • Open Access

    ARTICLE

    Preparation and Electrorheological Response of PAL/TiO2/PANI Nanorods

    Ling Wang1,2, Chenchen Huang1, Ping Zhang3, Fenghua Liu1,*, Ting Zou1, Zhixiang Li1, Jianfei Zhang1, Gaojie Xu1

    Journal of Renewable Materials, Vol.9, No.10, pp. 1707-1715, 2021, DOI:10.32604/jrm.2021.013884 - 12 May 2021

    Abstract Using palygorskite (PAL) as template, the PAL/TiO2/PANI nano-rods were synthesized by heterogeneous precipitation and in-situ polymerization. The synthesized PAL/TiO2/PANI nanorods were used as a novel electrorheological (ER) fluid by mixing with silicone oil, which showed excellent ER effect. The yield stress of the PAL/TiO2/PANI based ER fluid (15 vol%) reached 8.8 kPa under 4 kV mm−1 electric field. The dynamic shear stress of the PAL/TiO2/PANI based ER fluid could maintain a stable level in the shear rate range of 0.1–100 s−1 . Furthermore, the PAL/TiO2/PANI ER fluid exhibited excellent suspension stability. More >

  • Open Access

    ARTICLE

    VOC Sensing Studies on Electrically Conductive Polyaniline@MoS2 Nanocomposites

    RUBY AHMED1, MOHAMMAD OMAISH ANSARI2, FARMAN ALI1, SHAHID PERVEZ ANSARI1,*

    Journal of Polymer Materials, Vol.36, No.3, pp. 243-251, 2019, DOI:10.32381/JPM.2019.36.03.4

    Abstract Polyaniline (PANI) and molybdenum disulphide (MoS2 ) were used to prepare nanocomposites by in-situ oxidative polymerization of acidified aniline in presence of dispersed MoS2 in the reaction mixture. Electron Microscopy (SEM & TEM), Fourier Transform Infrared (FTIR) spectroscopy, Ultraviolet-Visible (UV-Vis) spectroscopy, and X-ray diffraction (XRD) were used to characterize these nanocomposites. SEM micrographs showed that PANI is present on the layers of MoS2 which were exfoliated during the preparation and the presence of MoS2 is also confirmed by XRD peaks. The nanocomposites were studied for their electrical conductivity and stability of electrical conductivity in terms of d.c. More >

  • Open Access

    ARTICLE

    Electrochemical Performance of Starch-Polyaniline Nanocomposites Synthesized By Sonochemical Process Intensification

    Narsimha Pandi1, Shirish H. Sonawane1,*, Sarang P. Gumfekar2, Anand Kishore Kola1, Pramod H. Borse3, Swapnil B. Ambade4, Sripadh Guptha1, Muthupandian Ashokkumar5

    Journal of Renewable Materials, Vol.7, No.12, pp. 1279-1293, 2019, DOI:10.32604/jrm.2019.07609

    Abstract The present study deals with the intensified synthesis of starchpolyaniline (starch-PANI) nanocomposite using an ultrasound-assisted method. Starch is a key component in this nanocomposite, which acts as a backbone of the nucleation of PANI. The Electrochemical property of the nanocomposite arises due to the addition of PANI. This is one of green approach for the synthesis of bio nanocomposite using ultrasound. The crystallinity of the composite is evaluated using the Scherrer Formula. The starch-PANI nanocomposite was characterized by XRD, FT-IR, Raman, XPS and TEM. The composite nanoparticles show spherical morphology. The elemental composition of starch-PANI More >

  • Open Access

    ARTICLE

    Electromagnetic Shielding Effectiveness of Grid-Mesh Films Made of Polyaniline: a Numerical Approach

    S. H. Kwon1, B. R. Kim2, H. K. Lee2,3

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 65-86, 2011, DOI:10.3970/cmc.2011.021.065

    Abstract The electromagnetic shielding effectiveness of grid-mesh films made of polyaniline was numerically investigated, and the optimal size of the polyaniline grid was determined through numerical analyses. The permittivity of polyaniline was first determined from an inverse analysis based on experimental data. A series of numerical analyses were carried out with 225 polyaniline grid-mesh films of different thickness, spacing, and width, and the shielding effectiveness of every grid was examined. In addition to the numerical analysis, the transparency of the grid-mesh films and the amount of polyaniline material required to manufacture the unit grid area (1mx1m) More >

Displaying 1-10 on page 1 of 6. Per Page