Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    Synergism of Zinc Oxide/Organoclay-Loaded Poly(lactic acid) Hybrid Nanocomposite Plasticized by Triacetin for Sustainable Active Food Packaging

    Ponusa Songtipya1,2,*, Thummanoon Prodpran1,2, Ladawan Songtipya1,2, Theerarat Sengsuk1

    Journal of Renewable Materials, Vol.12, No.5, pp. 951-967, 2024, DOI:10.32604/jrm.2024.049068

    Abstract The synergistic effect of organoclay (OC) and zinc oxide (ZnO) nanoparticles on the crucial properties of poly(lactic acid) (PLA) nanocomposite films was systematically investigated herein. After their incorporation into PLA via the solvent casting technique, the water vapor barrier property of the PLA/OC/ZnO film improved by a maximum of 86% compared to the neat PLA film without the deterioration of Young’s modulus or the tensile strength. Moreover, the film’s self-antibacterial activity against foodborne pathogens, including gram-negative (Escherichia coli, E. coli) and gram-positive (Staphylococcus aureus, S. aureus) bacteria, was enhanced by a maximum of approximately 98–99% compared to the neat… More > Graphic Abstract

    Synergism of Zinc Oxide/Organoclay-Loaded Poly(lactic acid) Hybrid Nanocomposite Plasticized by Triacetin for Sustainable Active Food Packaging

  • Open Access

    ARTICLE

    Study of Thermal, Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol) Blend Bioplastics

    Yodthong Baimark*, Theeraphol Phromsopha

    Journal of Renewable Materials, Vol.11, No.4, pp. 1881-1894, 2023, DOI:10.32604/jrm.2023.025400

    Abstract A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA) block copolymer has great potential for use as a flexible bioplastic. Highly flexible bioplastics are required for flexible packaging applications. In this work, a PEG was incorporated into block copolymer as a plasticizer by solvent casting. PLLA-PEG-PLLA/ PEG blends with different blend ratios were prepared, and the plasticizing effect and miscibility of PEG in block copolymer were intensively investigated compared to PLLA/PEG blends. The results indicated that the PEG was an effective plasticizer for the block copolymer. The blending of PEG decreased glass-transition temperature and accelerated the crystallization of both the PLLA More > Graphic Abstract

    Study of Thermal, Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol) Blend Bioplastics

  • Open Access

    ARTICLE

    Depolymerization of Post-Consumer Polylactic Acid Products

    David Grewell1,*, Gowrishankar Srinivasan1, Eric Cochran2

    Journal of Renewable Materials, Vol.2, No.3, pp. 157-165, 2014, DOI:10.7569/JRM.2014.634112

    Abstract Presented in this study is a novel recycling strategy for poly(lactic acid) (PLA) in which the depolymerization is rapidly promoted by the base-catalyzed hydrol-/alcohol-ysis of the terminal ester bonds under mild conditions. Post-consumer PLA water bottles were cut into approximately 6 x 2 mm plastic chips and heated to 50–60o C in water, ethanol, or methanol as the depolymerization medium. A variety of carbonate salts and alkaline metal oxides were screened as potential catalysts. High-power ultrasound was also investigated as a means to accelerate the PLA decomposition. Both mass loss and HPLC analysis of the More >

  • Open Access

    ARTICLE

    Using CO2 -Based Polymer Polypropylene Carbonate to Enhance the Interactions in Poly(lactic acid)/Wood Fiber Biocomposites

    Xiaoqing Zhang*, Simon Schmidtφ, Nick Rigopoulos, Januar Gotama, Eustathios Petinakis

    Journal of Renewable Materials, Vol.3, No.2, pp. 91-100, 2015, DOI:10.7569/JRM.2014.634135

    Abstract The behavior of a biodegradable CO2 -based polymer polypropylene carbonate (PPC) as polymer matrix of wood fi ber (WF) composites was examined and compared with that of using poly(lactic acid) (PLA) as the matrix. The PPC/WF composites displayed poor mechanical properties as compared to PLA/WF composites because PPC is an amorphous polymer with low Tg and poor thermal stability. However, when PPC was used in conjunction with PLA in WF composites, the mechanical strength and modulus of the composites could match or even exceed the level of PLA/WF composites. The strong intermolecular interactions between PPC and More >

  • Open Access

    ARTICLE

    Halogen-Free Flame Retarded Poly(Lactic Acid) with an Isosorbide-Derived Polyphosphonate

    Wenwen Guo1,2,3, Wei Cai3, Dong Wang1, Junling Wang4, Xiefei Zhu5,*, Bin Fei2,*

    Journal of Renewable Materials, Vol.10, No.7, pp. 1875-1888, 2022, DOI:10.32604/jrm.2022.018823

    Abstract Fabrication of flame retardants from renewable biomass has aroused extensive interest over the past decade. This work reported a synthesis of isosorbide-derived polyphosphonate (PICPP) as an anti-flammable agent for poly (lactic acid) (PLA). The presence of PICPP notably declined the storage modulus of PLA/PICPP owing to the declined molecular weight of PLA catalyzed by the presence of PICPP. PLA and PLA/PICPP thermally degraded in one stage under either air or nitrogen atmosphere. With increasing the amount of PICPP, the onset thermal decomposition temperature of PLA/PICPP was decreased gradually, owing to the earlier decomposition of PICPP. More >

  • Open Access

    Examination of a Biobased Carbon Nucleating Agent on Poly(lactic acid) Crystallization

    Michael R. Snowdon1,2, Amar K. Mohanty1,2, Manjusri Misra1,2*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 94-105, 2017, DOI:10.7569/JRM.2017.634134

    Abstract This article assesses the performance of a biobased carbon as a nucleator using common techniques to stimulate poly(lactic acid) crystallization and enhance the thermal stability of PLA during injection molding. The combination of a biodegradable plasticizer, poly(ethylene glycol) (PEG), along with biobased carbon-rich pyrolyzed biomass char residue and an industrially available microcrystalline talc, were tested for nucleating agent capabilities at additions of 10 wt%. Differential scanning calorimetry (DSC) data demonstrated that the inclusion of the plasticizer could increase the PLA crystalline content with further improvements when nucleating agent was present. With a higher mold temperature, More >

  • Open Access

    ARTICLE

    Effect of Poly(ε-caprolactone-b-tetrahydrofuran) Triblock Copolymer Concentration on Morphological, Thermal and Mechanical Properties of Immiscible PLA/PCL Blends

    Paula do Patrocínio Dias, Marcelo Aparecido Chinelatto*

    Journal of Renewable Materials, Vol.7, No.2, pp. 129-138, 2019, DOI:10.32604/jrm.2019.00037

    Abstract In this study a low molecular weight triblock copolymer derived from ε-caprolactone and tetrahydrofuran was used as a non-reactive compatibilizer of immiscible PLA/PCL blends. Ternary blends with 0, 1.5 wt%, 3 wt% and 5 wt% copolymer and about 75 wt% PLA were prepared by single screw extrusion and characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile and Izod impact testing. SEM micrographs showed that the size of the dispersed PCL domains was practically constant regardless of copolymer concentration. This result can be explained by the low shear rate More >

  • Open Access

    ARTICLE

    Reactive Compatibilization of Short-Fiber Reinforced Poly(lactic acid) Biocomposites

    Phornwalan Nanthananon1, Manus Seadan2, Sommai Pivsa-Art3, Hiroyuki Hamada4, Supakij Suttiruengwong1,*

    Journal of Renewable Materials, Vol.6, No.6, pp. 573-583, 2018, DOI:10.32604/JRM.2018.00129

    Abstract Poor interfacial adhesion between biobased thermoplastics and natural fibers is recognized as a major drawback for biocomposites. To be applicable for the large-scale production, a simple method to handle is of importance. This work presented poly(lactic acid) (PLA) reinforced with short-fiber and three reactive agents including anhydride and epoxide groups were selected as compatibilizers. Biocomposites were prepared by one-step melt-mixing methods. The influence of reactive agents on mechanical, dynamic mechanical properties and morphology of PLA biocomposites were investigated. Tensile strength and storage modulus of PLA biocomposites incorporated with epoxide-based reactive agent was increased 13.9% and More >

  • Open Access

    ARTICLE

    Surfactant-Assisted Poly(lactic acid)/Cellulose Nanocrystal Bionanocomposite for Potential Application in Paper Coating

    Ragab E. Abou-Zeid1*, Mohamed A. Diab1, Salah A. A. Mohamed2, Ahmed Salama1, Hind Abdullah Aljohani3, Kamel Rizq Shoueir4

    Journal of Renewable Materials, Vol.6, No.4, pp. 394-401, 2018, DOI:10.7569/JRM.2017.634156

    Abstract The current article addresses a new strategy for the preparation of polylactic acid/cellulose nanocrystal (PLA/CNCs) nanobiocomposite films with improved structural morphology, mechanical and barrier properties for food packaging applications. The addition of hexadecyltrimethylammonium bromide (CTAB) and sodium lauryl sulfate (SLS) as cationic and anionic surfactants respectively, was found to play a crucial role in preventing re-aggregation of the CNCs during drying and improving the dispersion of CNCs in the PLA. The coated paper was characterized using mechanical tests, water vapor permeability (WVP), X-ray diffraction (XRD), scanning electron microscopy (SEM) and air permeability. The results showed More >

  • Open Access

    ARTICLE

    Poly(lactic acid)-starch/Expandable Graphite (PLA-starch/EG) Flame Retardant Composites

    Mfiso Emmanuel Mngomezulu1, Adriaan Stephanus Luyt2, Steve Anthony Chapple3, Maya Jacob John3,4*

    Journal of Renewable Materials, Vol.6, No.1, pp. 26-37, 2018, DOI:10.7569/JRM.2017.634140

    Abstract This work reports on the effect of commercial expandable graphite (EG) on the flammability and thermal decomposition properties of PLA-starch blend. The PLA-starch/EG composites were prepared by melt-mixing and their thermal stability, volatile pyrolysis products and flammability characteristics were investigated. The char residues of the composites, after combustion in a cone calorimeter, were analyzed with environmental scanning electron microscopy (ESEM). The thermal decomposition stability of the composites improved in the presence of EG. However, the char content was less than expected as per the combination of the wt% EG added into PLA-starch and the %… More >

Displaying 1-10 on page 1 of 18. Per Page