Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    REVIEW

    Hydrodynamic Cavitation Enhanced SR-Aops Degradation of Organic Pollutants in Water: A Review

    Xiufeng Zhu1,2, Jingying Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 671-692, 2024, DOI:10.32604/fdmp.2023.045260

    Abstract

    SR-AOP (sulfate radical advanced oxidation process) is a novel water treatment method able to eliminate refractory organic pollutants. Hydrodynamic cavitation (HC) is a novel green technology, that can effectively produce strong oxidizing sulfate radicals. This paper presents a comprehensive review of the research advancements in these fields and a critical discussion of the principal factors influencing HC-enhanced SR-AOP and the mechanisms of synergistic degradation. Furthermore, some insights into the industrial application of HC/PS are also provided. Current research shows that this technology is feasible at the laboratory stage, but its application on larger scales requires further understanding and exploration. In… More > Graphic Abstract

    Hydrodynamic Cavitation Enhanced SR-Aops Degradation of Organic Pollutants in Water: A Review

  • Open Access

    ARTICLE

    Influences of the Fresh Air Volume on the Removal of Cough-Released Droplets in a Passenger Car of a High-Speed Train Using CFD

    Jun Xu1, Kai Bi1, Yibin Lu2,*, Tiantian Wang2,3, Hang Zhang2, Zeyuan Zheng3, Fushan Shi3, Yaxin Zheng3, Xiaoying Li2, Jingping Yang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2727-2748, 2024, DOI:10.32604/cmes.2023.031341

    Abstract The spread and removal of pollution sources, namely, cough-released droplets in three different areas (front, middle, and rear areas) of a fully-loaded passenger car in a high-speed train under different fresh air flow volume were studied using computational fluid dynamics (CFD) method. In addition, the structure of indoor flow fields was also analysed. The results show that the large eddies are more stable and flow faster in the air supply under Mode 2 (fresh air volume: 2200 m3/h) compared to Mode 1 (fresh air volume: 1100 m3/h). By analysing the spreading process of droplets sprayed at different locations in the passenger car… More >

  • Open Access

    ARTICLE

    Effect of Al2O3 Nanoparticles on the Compression Ignition Performances and Emitted Pollutants of a Diesel Engine

    Noora S. Ekab1, Ahmed Q. Salam2, Ali O. Abd3, Miqdam T. Chaichan4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2847-2861, 2023, DOI:10.32604/fdmp.2023.028874

    Abstract To improve the performances of diesel engines and to reduce the pollutants they emit, aluminum oxide nanoparticles in varying quantities (50, 100, 150 ppm) have been added to conventional diesel fuel. The results of such experimental tests have revealed that the addition of nano-Al2O3 particles to the diesel fuel reduces its consumption by 0.488%, 1.02%, and 1.377%, respectively and increases the brake thermal efficiency by 1.4%, 2.6%, and 3.8%, respectively. The concentrations of undesired gases decrease accordingly by 1.5%, 1.7%, and 2.8% for HC and by 5.88%, 11.7%, and 17.6%, respectively, for CO. For the same percentages of nanoparticles, NOx… More >

  • Open Access

    REVIEW

    Molecular mechanisms and cellular process in signal transduction pathway related to air pollutants in obstructive lung diseases: A mini-review

    AN-SOO JANG*

    BIOCELL, Vol.47, No.8, pp. 1703-1708, 2023, DOI:10.32604/biocell.2023.028975

    Abstract Exposure to air pollutants such as PM10, PM2.5, PM0.1, O3, CO, NO2, and SO2, and biological pollutants are important factors causing the evolution and furtherance of obstructive lung diseases (OLD), including asthma and chronic obstructive pulmonary disease (COPD). Asthma is the most frequent chronic inflammatory airway disease, characterized by breathlessness, wheezing, chest tightness, and cough, together with the presence of exaggerated expiratory airflow fluctuation that varies over time. COPD is a heterogeneous lung condition characterized by chronic respiratory symptoms such as dyspnea, cough, expectoration, and/or exacerbations due to abnormalities of the airways and/or alveoli that cause persistent, often progressive, airflow… More >

  • Open Access

    ARTICLE

    Nitrogen and Phosphorus Pollutants Removal from Rice Field Drainage with Ecological Agriculture Ditch: A Field Case

    Lina Chen1,2,3,4, Wenshuo Zhang1, Junyi Tan5,*, Xiaohou Shao1, Yaliu Qiu7, Fangxiu Zhang2,6, Xiang Zhang2,6

    Phyton-International Journal of Experimental Botany, Vol.91, No.12, pp. 2827-2841, 2022, DOI:10.32604/phyton.2022.024105

    Abstract Excessive nitrogen and phosphorus in agricultural drainage can cause a series of water environmental problems such as eutrophication of water bodies and non-point source pollution. By monitoring the water purification effect of a paddy ditch wetland in Gaochun, Nanjing, Jiangsu Province, we investigated the spatial and temporal distribution patterns of N and P pollutants in paddy drains during the whole reproductive period of rice. Then, the dynamic changes of nitrogen and phosphorus in time and space during the two processes of rainfall after basal fertilization and topdressing were analyzed after comparison. At last, the effect of the ditch wetland on… More >

  • Open Access

    ARTICLE

    Remarkably Enhanced Photodegradation of Organic Pollutants by NH2-UiO-66/ZnO Composite under Visible-Light Irradiation

    Dehong Teng1,#, Jing Zhang1,#, Xinzhi Luo1, Fei Jing1, Hengwei Wang1, Jing Chen1,* , Chao Yang1, Shaohong Zang1,*, Yingtang Zhou1,2

    Journal of Renewable Materials, Vol.10, No.9, pp. 2378-2391, 2022, DOI:10.32604/jrm.2022.019209

    Abstract Semiconductor photocatalysis is a novel highly efficient and low-cost method for removing organic pollutants from wastewater. However, the photoreduction performance of semiconductors on organic pollutants is limited due to the weak absorption of visible light caused by its wide band gap and low carrier utilization rate resulting from severe electron-holes recombination. In the present study, flower-like NH2-UiO-66 (NU66)/ZnO nanocomposites were prepared using a facile method and exhibited high efficiency under visible light driven photocatalysts. The X-ray diffractometer (XRD), scanning electron microscope (SEM), transmitor electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared samples, indicating that… More > Graphic Abstract

    Remarkably Enhanced Photodegradation of Organic Pollutants by NH<sub>2</sub>-UiO-66/ZnO Composite under Visible-Light Irradiation

  • Open Access

    REVIEW

    Melatonin and its protective role against male reproductive toxicity induced by heavy metals, environmental pollutants, and chemotherapy: A review

    TIECHENG SUN1,#, LINGLI SONG1,#, JING MA2,#, HONG YU1, SHANJIE ZHOU1, SHUSONG WANG2, LI TIAN1,3,*

    BIOCELL, Vol.44, No.4, pp. 479-485, 2020, DOI:10.32604/biocell.2020.011675

    Abstract Melatonin, as a ubiquitous indoleamine hormone, is synthesized primarily by the pineal gland. It has diverse biological effects through quite complex mechanisms. More recently, studies have focused on the mechanism of melatonin in anti-reproductive toxicity/damage. Since melatonin possesses strong antioxidant and anti-apoptotic properties, researchers have examined its potential role in protecting against male reproductive toxicity/damage, which may be induced by chemotherapy or environmental toxicants and can lead to male infertility. In this article, recent progress regarding the protective effects of melatonin on male reproductive toxicity/damage is reviewed. More >

  • Open Access

    ARTICLE

    An Experimental Investigation about the Levels of PM2.5 and Formaldehyde Pollutants inside an Office

    Xiangli Wang1, Peiyong Ni2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 237-243, 2020, DOI:10.32604/fdmp.2020.09469

    Abstract PM2.5 and formaldehyde are two main indoor pollutants potentially threatening the health of human beings. In this paper, the concentrations of PM2.5 and formaldehyde inside an office were measured under different conditions. The effects of temperature on the formaldehyde originating from the decoration materials, including flooring, gypsum powder, joint mixture and corestock, were also assessed. The results show that window ventilation can produce the same PM2.5 purification as an air cleaner. The concentration of formaldehyde released from the decoration materials is highly correlated to the indoor temperature, but it is not significantly influenced by humidity. In particular, the percentage of… More >

  • Open Access

    ARTICLE

    Graphene-Based 3D Xerogel as Adsorbent for Removal of Heavy Metal Ions from Industrial Wastewater

    Purnendu, Soumitra Satapathi*

    Journal of Renewable Materials, Vol.5, No.2, pp. 96-102, 2017, DOI:10.7569/JRM.2016.634134

    Abstract Graphene-based 3D porous xerogel was designed through molecular self-assembly of graphene oxide on chitosan matrix and its application in removal of different heavy metal ions from wastewater was investigated. The synthesized xerogel was characterized through FTIR, SEM, XRD and BET surface area analysis. Heavy metal ions, including Pb(II), Cd(II), and Hg(II), were removed from wastewater using this graphene-chitosan (GO-Cs) xerogel and the removal efficiency was monitored through inductively coupled plasma mass spectrometry (ICP-MS). The effect of GO-Cs composition and pH on adsorption efficiency as well as the kinetics of adsorption was studied in detail. The study exhibited that this xerogel… More >

  • Open Access

    ARTICLE

    Inclination Impact on the Mass Transfer Process Resulting from the Interaction of Twin Tandem Jets with a Crossflow

    A. Radhouane1, N. Mahjoub Said1, H. Mhiri1, G. Le Palec2, P. Bournot2

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 385-398, 2010, DOI:10.3970/fdmp.2010.006.385

    Abstract "Twin jets in crossflow" is a complex configuration that raises an increasing interest due to its presence in various common applications such as chimney stacks, film cooling, VSTOL aircrafts, etc... In the present paper, the twin jets were arranged inline with an oncoming crossflow;they were also inclined which resulted in similar elliptic cross sections of the nozzles' exits. The exploration of the flows in interaction was carried out numerically by means of the finite volume method together with the second order turbulent closure model, namely the Reynolds stress Model (RSM), and a non uniform grid system particularly refined near the… More >

Displaying 1-10 on page 1 of 11. Per Page