Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    Federated Dynamic Aggregation Selection Strategy-Based Multi-Receptive Field Fusion Classification Framework for Point Cloud Classification

    Yuchao Hou1,2, Biaobiao Bai3, Shuai Zhao3, Yue Wang3, Jie Wang3, Zijian Li4,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-30, 2026, DOI:10.32604/cmc.2025.069789 - 09 December 2025

    Abstract Recently, large-scale deep learning models have been increasingly adopted for point cloud classification. However, these methods typically require collecting extensive datasets from multiple clients, which may lead to privacy leaks. Federated learning provides an effective solution to data leakage by eliminating the need for data transmission, relying instead on the exchange of model parameters. However, the uneven distribution of client data can still affect the model’s ability to generalize effectively. To address these challenges, we propose a new framework for point cloud classification called Federated Dynamic Aggregation Selection Strategy-based Multi-Receptive Field Fusion Classification Framework (FDASS-MRFCF).… More >

  • Open Access

    ARTICLE

    Three-Dimensional Trajectory Planning for Robotic Manipulators Using Model Predictive Control and Point Cloud Optimization

    Zeinel Momynkulov1,2, Azhar Tursynova1,2,*, Olzhas Olzhayev1,2, Akhanseri Ikramov1,2, Sayat Ibrayev1, Batyrkhan Omarov1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 891-918, 2025, DOI:10.32604/cmes.2025.068615 - 30 October 2025

    Abstract Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position, velocity, and acceleration must be satisfied. Conventional geometric planners emphasize path smoothness but often ignore dynamic feasibility, motivating control-aware trajectory generation. This study presents a novel model predictive control (MPC) framework for three-dimensional trajectory planning of robotic manipulators that integrates second-order dynamic modeling and multi-objective parameter optimization. Unlike conventional interpolation techniques such as cubic splines, B-splines, and linear interpolation, which neglect physical constraints and system dynamics, the proposed method generates dynamically feasible trajectories by directly optimizing over acceleration inputs while… More >

  • Open Access

    ARTICLE

    Methods for the Segmentation of Reticular Structures Using 3D LiDAR Data: A Comparative Evaluation

    Francisco J. Soler Mora1,*, Adrián Peidró Vidal1, Marc Fabregat-Jaén1, Luis Payá Castelló1,2, Óscar Reinoso García 1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3167-3195, 2025, DOI:10.32604/cmes.2025.064510 - 30 June 2025

    Abstract Reticular structures are the basis of major infrastructure projects, including bridges, electrical pylons and airports. However, inspecting and maintaining these structures is both expensive and hazardous, traditionally requiring human involvement. While some research has been conducted in this field of study, most efforts focus on faults identification through images or the design of robotic platforms, often neglecting the autonomous navigation of robots through the structure. This study addresses this limitation by proposing methods to detect navigable surfaces in truss structures, thereby enhancing the autonomous capabilities of climbing robots to navigate through these environments. The paper… More >

  • Open Access

    ARTICLE

    A Category-Agnostic Hybrid Contrastive Learning Method for Few-Shot Point Cloud Object Detection

    Xuejing Li*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1667-1681, 2025, DOI:10.32604/cmc.2025.062161 - 16 April 2025

    Abstract Few-shot point cloud 3D object detection (FS3D) aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the novel classes. Due to imbalanced training data, existing FS3D methods based on fully supervised learning can lead to overfitting toward base classes, which impairs the network’s ability to generalize knowledge learned from base classes to novel classes and also prevents the network from extracting distinctive foreground and background representations for novel class objects. To address these issues, this thesis proposes a… More >

  • Open Access

    ARTICLE

    Advancing Railway Infrastructure Monitoring: A Case Study on Railway Pole Detection

    Yuxin Yan, Huirui Wang, Jingyi Wen, Zerong Lan, Liang Wang*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3059-3073, 2025, DOI:10.32604/cmc.2024.057949 - 16 April 2025

    Abstract The development of artificial intelligence (AI) technologies creates a great chance for the iteration of railway monitoring. This paper proposes a comprehensive method for railway utility pole detection. The framework of this paper on railway systems consists of two parts: point cloud preprocessing and railway utility pole detection. This method overcomes the challenges of dynamic environment adaptability, reliance on lighting conditions, sensitivity to weather and environmental conditions, and visual occlusion issues present in 2D images and videos, which utilize mobile LiDAR (Laser Radar) acquisition devices to obtain point cloud data. Due to factors such as… More >

  • Open Access

    ARTICLE

    Fine-Grained Point Cloud Intensity Correction Modeling Method Based on Mobile Laser Scanning

    Xu Liu1, Qiujie Li1,*, Youlin Xu1, Musaed Alhussein2, Khursheed Aurangzeb2,*, Fa Zhu1

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 575-593, 2025, DOI:10.32604/cmc.2025.062445 - 26 March 2025

    Abstract The correction of Light Detection and Ranging (LiDAR) intensity data is of great significance for enhancing its application value. However, traditional intensity correction methods based on Terrestrial Laser Scanning (TLS) technology rely on manual site setup to collect intensity training data at different distances and incidence angles, which is noisy and limited in sample quantity, restricting the improvement of model accuracy. To overcome this limitation, this study proposes a fine-grained intensity correction modeling method based on Mobile Laser Scanning (MLS) technology. The method utilizes the continuous scanning characteristics of MLS technology to obtain dense point… More >

  • Open Access

    ARTICLE

    Drone-Based Public Surveillance Using 3D Point Clouds and Neuro-Fuzzy Classifier

    Yawar Abbas1, Aisha Ahmed Alarfaj2, Ebtisam Abdullah Alabdulqader3, Asaad Algarni4, Ahmad Jalal1,5, Hui Liu6,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4759-4776, 2025, DOI:10.32604/cmc.2025.059224 - 06 March 2025

    Abstract Human Activity Recognition (HAR) in drone-captured videos has become popular because of the interest in various fields such as video surveillance, sports analysis, and human-robot interaction. However, recognizing actions from such videos poses the following challenges: variations of human motion, the complexity of backdrops, motion blurs, occlusions, and restricted camera angles. This research presents a human activity recognition system to address these challenges by working with drones’ red-green-blue (RGB) videos. The first step in the proposed system involves partitioning videos into frames and then using bilateral filtering to improve the quality of object foregrounds while… More >

  • Open Access

    ARTICLE

    SGT-Net: A Transformer-Based Stratified Graph Convolutional Network for 3D Point Cloud Semantic Segmentation

    Suyi Liu1,*, Jianning Chi1, Chengdong Wu1, Fang Xu2,3,4, Xiaosheng Yu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4471-4489, 2024, DOI:10.32604/cmc.2024.049450 - 20 June 2024

    Abstract In recent years, semantic segmentation on 3D point cloud data has attracted much attention. Unlike 2D images where pixels distribute regularly in the image domain, 3D point clouds in non-Euclidean space are irregular and inherently sparse. Therefore, it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space. Most current methods either focus on local feature aggregation or long-range context dependency, but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks. In this paper, we propose a Transformer-based… More >

  • Open Access

    ARTICLE

    A Random Fusion of Mix3D and PolarMix to Improve Semantic Segmentation Performance in 3D Lidar Point Cloud

    Bo Liu1,2, Li Feng1,*, Yufeng Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 845-862, 2024, DOI:10.32604/cmes.2024.047695 - 16 April 2024

    Abstract This paper focuses on the effective utilization of data augmentation techniques for 3D lidar point clouds to enhance the performance of neural network models. These point clouds, which represent spatial information through a collection of 3D coordinates, have found wide-ranging applications. Data augmentation has emerged as a potent solution to the challenges posed by limited labeled data and the need to enhance model generalization capabilities. Much of the existing research is devoted to crafting novel data augmentation methods specifically for 3D lidar point clouds. However, there has been a lack of focus on making the… More >

  • Open Access

    ARTICLE

    Part-Whole Relational Few-Shot 3D Point Cloud Semantic Segmentation

    Shoukun Xu1, Lujun Zhang1, Guangqi Jiang1, Yining Hua2, Yi Liu1,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3021-3039, 2024, DOI:10.32604/cmc.2023.045853 - 26 March 2024

    Abstract This paper focuses on the task of few-shot 3D point cloud semantic segmentation. Despite some progress, this task still encounters many issues due to the insufficient samples given, e.g., incomplete object segmentation and inaccurate semantic discrimination. To tackle these issues, we first leverage part-whole relationships into the task of 3D point cloud semantic segmentation to capture semantic integrity, which is empowered by the dynamic capsule routing with the module of 3D Capsule Networks (CapsNets) in the embedding network. Concretely, the dynamic routing amalgamates geometric information of the 3D point cloud data to construct higher-level feature… More >

Displaying 1-10 on page 1 of 22. Per Page