Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (100)
  • Open Access

    PROCEEDINGS

    Nonlocal Crystal Plasticity Modeling of Heterostructured Materials

    Jianfeng Zhao1,*, Xu Zhang2, Guozheng Kang2, Michael Ziaser3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012582

    Abstract A continuum model of dislocation transport incorporating grain boundary transmission was developed within a dislocation-based crystal plasticity framework, which was then adopted to study the deformation mechanisms of gradient-structured material and bimodal-grained material. The nonlocal nature of the model on the slip system level enables the direct investigation of strain gradient effects caused by internal deformation heterogeneities. Furthermore, the interaction between dislocations and grain boundaries leads to the formation of pileups near grain boundaries, which is key to studying the grain size effects in polycrystals. Finite element implementation of the model for polycrystals with different… More >

  • Open Access

    PROCEEDINGS

    Unique Mechanism in Strength and Deformation of Natural Nano-Sized Fibers: Molecular Dynamics Study on Nanofibrils of Cellulose and Spider Silk

    Ken-ichi Saitoh1,*, Makoto Watanabe2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012624

    Abstract Natural nanofibers, e.g., cellulose nanofiber (CNF) of plant, collagen fibril in human body and fibroin fiber in spider silk, show interesting and distinctive atomistic mechanisms in deformation under mechanical loading as well as exhibition of extraordinary strength. These fibers are comprising more larger bulk and wire materials by constructing structural hierarchy. However, the initiation of unique behavior of these materials largely originates from atomic-scale and chemical energetics in loading. Besides, the experimental approach is often difficult and is too limited to reveal the basic mechanism. Therefore, it is crucial to clarify atomic behavior of these… More >

  • Open Access

    ARTICLE

    Exploring the Trait Plasticity of ipa1-2D and qPL6 under Different Nitrogen Treatments and Heading Periods

    Wenshu Zhuang1,#, Guangyang Jin1,#, Yiting Zou1, Zhong Bian1, Dong Xie1, Shuwei Zhang1, Hadi Yeilaghi1, Liangliang Yu3, Muiyun Wong4, Xiaolei Fan1,2, Dongsheng Zhao1,2, Qiaoquan Liu1,2, Lin Zhang1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2737-2754, 2024, DOI:10.32604/phyton.2024.054649 - 30 November 2024

    Abstract Panicle size is one of the important factors in shaping yield potential in rice, but it shows plasticity in different environments, which leads to yield fluctuation. Variations in panicle size among varieties are largely determined by quantitative trait loci (QTLs). QTL analysis could elaborate on the environmental impact on trait plasticity using nearly isogenic lines (NILs) of different QTLs. Two QTLs, ipa1-2D and qPL6 are identified to have pleiotropic contributions to panicle size and plant architecture, but their responses to different growth conditions are still unclear. In this study, we developed NILs harboring a single locus… More >

  • Open Access

    PROCEEDINGS

    A Novel Damage Model for Face-Centered Cubic Crystal Materials Incorporating Microscopic Crystal Cleavage and Slip Failure Mechanisms

    Qianyu Xia1, Zhixin Zhan1,*, Weiping Hu1, Qingchun Meng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011238

    Abstract The occurrence of crystal cleavage and slip at the microscopic level in single crystal materials serves as the fundamental underlying factors leading to their macroscopic failures. Therefore, investigating the failure mechanisms and damage processes at the scale of slip systems significantly enhances our comprehension of the degradation and failure patterns exhibited by crystal materials.
    In this study, based on the theory of crystal plasticity, we examine the effects of microscopic damage on the slip systems concerning the failure of face-centered cubic (FCC) crystal materials. Additionally, we develop a novel damage model for FCC crystal materials, incorporating… More >

  • Open Access

    ARTICLE

    The Lightweight Edge-Side Fault Diagnosis Approach Based on Spiking Neural Network

    Jingting Mei, Yang Yang*, Zhipeng Gao, Lanlan Rui, Yijing Lin

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4883-4904, 2024, DOI:10.32604/cmc.2024.051860 - 20 June 2024

    Abstract Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management. Considering the unique characteristics of edge networks, such as limited resources, complex network faults, and the need for high real-time performance, enhancing and optimizing existing network fault diagnosis methods is necessary. Therefore, this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network (LSNN). Firstly, we use the Izhikevich neurons model to replace the Leaky Integrate and Fire (LIF) neurons model in the LSNN model. Izhikevich… More >

  • Open Access

    PROCEEDINGS

    Effects of Pre-straining on Material Anisotropy in Sheet Metals

    Peidong Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010491

    Abstract The material anisotropy of an aluminum sheet alloy is determined by performing tensile tests at different angles with respect to the rolling direction (RD). To study the effect of pre-straining on the evolution of material anisotropy, a very wide sheet is stretched to different strains in the transverse direction (TD). The material in the central region is very close to a state of in-plane plane strain tension. Small tensile samples are cut from the central region of the pre-strained wide sample. Tensile tests are then performed on these small tensile samples. By comparing the differences More >

  • Open Access

    PROCEEDINGS

    Understanding the Micromechanical Behaviors of Particle-Reinforced Al Composite by Nonlocal Crystal Plasticity Modeling

    Haiming Zhang1,2,*, Shilin Zhao1,2, Zhenshan Cui1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.08884

    Abstract Particle-reinforced aluminum matrix composites (PRAMCs) have great potential for application in aerospace, automobile, defense, and electronics due to their high specific strength and stiffness and good resistance to wear and corrosion. Achieving a superior trade-off between the strength and ductility of PRAMCs necessitates an elaborative control of the microstructures, like the size and distribution of particles, as well as grain size, morphology, and texture of the matrix. The multiscale interaction between the particles and the matrix’s microstructure is insufficiently understood due to the lagging of high-resolved in-situ characterization. This work proposes a nonlocal physically based… More >

  • Open Access

    PROCEEDINGS

    Micromechanical Study of Heterogenous Deformation of Austenitic Stainless Steel Welded Joints at Different Temperatures

    Lifeng Gan1, Baoyin Zhu2, Chao Ling1,*, Esteban P. Busso1, Dongfeng Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010397

    Abstract Heat-resistant austenitic stainless steels are widely used in the final stages of superheater and reheater in in the new generation of fossil fuel power stations, due to their high creep strength. Similar weld joints, fabricated using gas tungsten arc welding, for connecting different components made of the heat resistant austenitic stainless steels usually suffer from premature failures at elevated temperature [1]. Experimental studies showed that cracks may nucleate in the heat affected zone or weld metal of the similar welded joints under service conditions. In order to reveal the physical origin of unexpected failures of… More >

  • Open Access

    PROCEEDINGS

    Anisotropic Mechanical Behaviors of Alsi10Mg Alloy Fabricated by Additive Manufacturing: Experiments and Modeling

    Shi Dai1, Yanping Lian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010175

    Abstract In recent years, metal additive manufacturing (AM) has gained increasing attention from various industries. However, there are few studies on the thermal deformation behavior of additively manufactured metallic components, which is vital to pushing its applications’ boundary. In this work, we first experimentally investigate the mechanical behavior of AlSi10Mg produced by laser powder bed fusion under different temperatures and strain rates. A crystal plasticity finite element model is adopted to provide insights into the intrinsic deformation mechanisms. The model is validated by comparing it with the flow behaviors and dislocation evolutions observed in experiments at More >

  • Open Access

    PROCEEDINGS

    Multiscale Plasticity-Fracture Coupled Model

    Yinan Cui1,*, Zhijie Li1, Zhangtao Li1, Zhanli Liu1, Zhuo Zhuang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010121

    Abstract How the plasticity features influence the fracture behaviours of material is a critical question but remains far from well understood. To disclose this mystery, a multiscale plasticity-fracture coupled model is developed, which considers the atomistic-scale dislocation motion mechanism, the mesoscopic scales of discrete crack-dislocation interactions, and the continuum scale of crystalline plastic-fracture response. Body center cubic (bcc) material is chosen as an example to demonstrate the effectiveness of the developed model due to their wide applications and their special plasticity features, such as strong temperature dependence and non-Schmid effect. Several new insights about the fracture More >

Displaying 1-10 on page 1 of 100. Per Page