Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (93)
  • Open Access

    ARTICLE

    Efficient Penetration Testing Path Planning Based on Reinforcement Learning with Episodic Memory

    Ziqiao Zhou1, Tianyang Zhou1,*, Jinghao Xu2, Junhu Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2613-2634, 2024, DOI:10.32604/cmes.2023.028553

    Abstract Intelligent penetration testing is of great significance for the improvement of the security of information systems, and the critical issue is the planning of penetration test paths. In view of the difficulty for attackers to obtain complete network information in realistic network scenarios, Reinforcement Learning (RL) is a promising solution to discover the optimal penetration path under incomplete information about the target network. Existing RL-based methods are challenged by the sizeable discrete action space, which leads to difficulties in the convergence. Moreover, most methods still rely on experts’ knowledge. To address these issues, this paper… More >

  • Open Access

    ARTICLE

    A Planning Method for Operational Test of UAV Swarm Based on Mission Reliability

    Jingyu Wang1, Ping Jiang1,*, Jianjun Qi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1889-1918, 2024, DOI:10.32604/cmes.2024.049813

    Abstract The unmanned aerial vehicle (UAV) swarm plays an increasingly important role in the modern battlefield, and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm. Due to the high cost and long duration of operational tests, it is essential to plan the test in advance. To solve the problem of planning UAV swarm operational test, this study considers the multi-stage feature of a UAV swarm mission, composed of launch, flight and combat stages, and proposes a method to find test plans that can maximize mission reliability.… More >

  • Open Access

    ARTICLE

    Rolling Decision Model of Thermal Power Retrofit and Generation Expansion Planning Considering Carbon Emissions and Power Balance Risk

    Dong Pan1, Xu Gui1, Jiayin Xu1, Yuming Shen1, Haoran Xu2, Yinghao Ma2,*

    Energy Engineering, Vol.121, No.5, pp. 1309-1328, 2024, DOI:10.32604/ee.2024.046464

    Abstract With the increasing urgency of the carbon emission reduction task, the generation expansion planning process needs to add carbon emission risk constraints, in addition to considering the level of power adequacy. However, methods for quantifying and assessing carbon emissions and operational risks are lacking. It results in excessive carbon emissions and frequent load-shedding on some days, although meeting annual carbon emission reduction targets. First, in response to the above problems, carbon emission and power balance risk assessment indicators and assessment methods, were proposed to quantify electricity abundance and carbon emission risk level of power planning… More >

  • Open Access

    ARTICLE

    A Novel Defender-Attacker-Defender Model for Resilient Distributed Generator Planning with Network Reconfiguration and Demand Response

    Wenlu Ji*, Teng Tu, Nan Ma

    Energy Engineering, Vol.121, No.5, pp. 1223-1243, 2024, DOI:10.32604/ee.2024.046112

    Abstract To improve the resilience of a distribution system against extreme weather, a fuel-based distributed generator (DG) allocation model is proposed in this study. In this model, the DGs are placed at the planning stage. When an extreme event occurs, the controllable generators form temporary microgrids (MGs) to restore the load maximally. Simultaneously, a demand response program (DRP) mitigates the imbalance between the power supply and demand during extreme events. To cope with the fault uncertainty, a robust optimization (RO) method is applied to reduce the long-term investment and short-term operation costs. The optimization is formulated More >

  • Open Access

    ARTICLE

    Efficient Route Planning for Real-Time Demand-Responsive Transit

    Hongle Li1, SeongKi Kim2,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 473-492, 2024, DOI:10.32604/cmc.2024.048402

    Abstract Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetables and determines the stop and the start according to the demands. This study explores the optimization of dynamic vehicle scheduling and real-time route planning in urban public transportation systems, with a focus on bus services. It addresses the limitations of current shared mobility routing algorithms, which are primarily designed for simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. The research introduces an route planning algorithm designed to dynamically accommodate passenger travel needs… More >

  • Open Access

    ARTICLE

    Path Planning for AUVs Based on Improved APF-AC Algorithm

    Guojun Chen*, Danguo Cheng, Wei Chen, Xue Yang, Tiezheng Guo

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3721-3741, 2024, DOI:10.32604/cmc.2024.047325

    Abstract With the increase in ocean exploration activities and underwater development, the autonomous underwater vehicle (AUV) has been widely used as a type of underwater automation equipment in the detection of underwater environments. However, nowadays AUVs generally have drawbacks such as weak endurance, low intelligence, and poor detection ability. The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks. To improve the underwater operation ability of the AUV, this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm. In response to… More >

  • Open Access

    ARTICLE

    An Improved Bounded Conflict-Based Search for Multi-AGV Pathfinding in Automated Container Terminals

    Xinci Zhou, Jin Zhu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2705-2727, 2024, DOI:10.32604/cmes.2024.046363

    Abstract As the number of automated guided vehicles (AGVs) within automated container terminals (ACT) continues to rise, conflicts have become more frequent. Addressing point and edge conflicts of AGVs, a multi-AGV conflict-free path planning model has been formulated to minimize the total path length of AGVs between shore bridges and yards. For larger terminal maps and complex environments, the grid method is employed to model AGVs’ road networks. An improved bounded conflict-based search (IBCBS) algorithm tailored to ACT is proposed, leveraging the binary tree principle to resolve conflicts and employing focal search to expand the search More >

  • Open Access

    ARTICLE

    A Reverse Path Planning Approach for Enhanced Performance of Multi-Degree-of-Freedom Industrial Manipulators

    Zhiwei Lin1, Hui Wang1,*, Tianding Chen1, Yingtao Jiang2, Jianmei Jiang3, Yingpin Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1357-1379, 2024, DOI:10.32604/cmes.2023.045990

    Abstract In the domain of autonomous industrial manipulators, precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance, such as handling, heat sealing, and stacking. While Multi-Degree-of-Freedom (MDOF) manipulators offer kinematic redundancy, aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites, their path planning entails intricate multi-objective optimization, encompassing path, posture, and joint motion optimization. Achieving satisfactory results in practical scenarios remains challenging. In response, this study introduces a novel Reverse Path Planning (RPP) methodology tailored for industrial manipulators. The approach commences by conceptualizing… More > Graphic Abstract

    A Reverse Path Planning Approach for Enhanced Performance of Multi-Degree-of-Freedom Industrial Manipulators

  • Open Access

    ARTICLE

    Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm

    Xiaoge Wei1,2,*, Yuming Zhang1,2, Huaitao Song1,2, Hengjie Qin1,2, Guanjun Zhao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1295-1316, 2024, DOI:10.32604/cmes.2023.045096

    Abstract Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years. As part of this effort, an enhanced sparrow search algorithm (MSSA) was proposed. Firstly, the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm. Secondly, the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima. Finally, the local search mechanism based on the mountain climbing method was incorporated into… More >

  • Open Access

    ARTICLE

    An Enhanced Equilibrium Optimizer for Solving Optimization Tasks

    Yuting Liu1, Hongwei Ding1,*, Zongshan Wang1,*, Gaurav Dhiman2,3,4, Zhijun Yang1, Peng Hu5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2385-2406, 2023, DOI:10.32604/cmc.2023.039883

    Abstract The equilibrium optimizer (EO) represents a new, physics-inspired metaheuristic optimization approach that draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass equilibrium. Despite its innovative foundation, the EO exhibits certain limitations, including imbalances between exploration and exploitation, the tendency to local optima, and the susceptibility to loss of population diversity. To alleviate these drawbacks, this paper introduces an improved EO that adopts three strategies: adaptive inertia weight, Cauchy mutation, and adaptive sine cosine mechanism, called SCEO. Firstly, a new update formula is conceived by incorporating an adaptive inertia weight… More >

Displaying 1-10 on page 1 of 93. Per Page