Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (144)
  • Open Access

    ARTICLE

    Dynamic Integration of Q-Learning and A-APF for Efficient Path Planning in Complex Underground Mining Environments

    Chang Su, Liangliang Zhao*, Dongbing Xiang

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.071319 - 09 December 2025

    Abstract To address low learning efficiency and inadequate path safety in spraying robot navigation within complex obstacle-rich environments—with dense, dynamic, unpredictable obstacles challenging conventional methods—this paper proposes a hybrid algorithm integrating Q-learning and improved A*-Artificial Potential Field (A-APF). Centered on the Q-learning framework, the algorithm leverages safety-oriented guidance generated by A-APF and employs a dynamic coordination mechanism that adaptively balances exploration and exploitation. The proposed system comprises four core modules: (1) an environment modeling module that constructs grid-based obstacle maps; (2) an A-APF module that combines heuristic search from A* algorithm with repulsive force strategies from… More >

  • Open Access

    ARTICLE

    Smart Assessment of Flight Quality for Trajectory Planning in Internet of Flying Things

    Weiping Zeng1, Xiangping Bryce Zhai1,2,3,*, Cheng Sun1, Liusha Jiang1,2, Yicong Du3, Xuefeng Yan1,3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070777 - 09 December 2025

    Abstract With the expanding applications of unmanned aerial vehicles (UAVs), precise flight evaluation has emerged as a critical enabler for efficient path planning, directly impacting operational performance and safety. Traditional path planning algorithms typically combine Dubins curves with local optimization to minimize trajectory length under 3D spatial constraints. However, these methods often overlook the correlation between pilot control quality and UAV flight dynamics, limiting their adaptability in complex scenarios. In this paper, we propose an intelligent flight evaluation model specifically designed to enhance multi-waypoint trajectory optimization algorithms. Our model leverages a decision tree to integrate attitude More >

  • Open Access

    ARTICLE

    Adaptive Path-Planning for Autonomous Robots: A UCH-Enhanced Q-Learning Approach

    Wei Liu1,*, Ruiyang Wang1, Guangwei Liu2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.070328 - 09 December 2025

    Abstract Q-learning is a classical reinforcement learning method with broad applicability. It can respond effectively to environmental changes and provide flexible strategies, making it suitable for solving robot path-planning problems. However, Q-learning faces challenges in search and update efficiency. To address these issues, we propose an improved Q-learning (IQL) algorithm. We use an enhanced Ant Colony Optimization (ACO) algorithm to optimize Q-table initialization. We also introduce the UCH mechanism to refine the reward function and overcome the exploration dilemma. The IQL algorithm is extensively tested in three grid environments of different scales. The results validate the… More >

  • Open Access

    ARTICLE

    Energy Optimization for Autonomous Mobile Robot Path Planning Based on Deep Reinforcement Learning

    Longfei Gao*, Weidong Wang, Dieyun Ke

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.068873 - 10 November 2025

    Abstract At present, energy consumption is one of the main bottlenecks in autonomous mobile robot development. To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments, this paper proposes an Attention-Enhanced Dueling Deep Q-Network (AD-Dueling DQN), which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework. A multi-objective reward function, centered on energy efficiency, is designed to comprehensively consider path length, terrain slope, motion smoothness, and obstacle avoidance, enabling optimal low-energy trajectory generation in 3D space from the… More >

  • Open Access

    ARTICLE

    HS-APF-RRT*: An Off-Road Path-Planning Algorithm for Unmanned Ground Vehicles Based on Hierarchical Sampling and an Enhanced Artificial Potential Field

    Zhenpeng Jiang, Qingquan Liu*, Ende Wang

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068780 - 10 November 2025

    Abstract Rapidly-exploring Random Tree (RRT) and its variants have become foundational in path-planning research, yet in complex three-dimensional off-road environments their uniform blind sampling and limited safety guarantees lead to slow convergence and force an unfavorable trade-off between path quality and traversal safety. To address these challenges, we introduce HS-APF-RRT*, a novel algorithm that fuses layered sampling, an enhanced Artificial Potential Field (APF), and a dynamic neighborhood-expansion mechanism. First, the workspace is hierarchically partitioned into macro, meso, and micro sampling layers, progressively biasing random samples toward safer, lower-energy regions. Second, we augment the traditional APF by More >

  • Open Access

    ARTICLE

    An Embedded Computer Vision Approach to Environment Modeling and Local Path Planning in Autonomous Mobile Robots

    Rıdvan Yayla, Hakan Üçgün*, Onur Ali Korkmaz

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4055-4087, 2025, DOI:10.32604/cmes.2025.072703 - 23 December 2025

    Abstract Recent advancements in autonomous vehicle technologies are transforming intelligent transportation systems. Artificial intelligence enables real-time sensing, decision-making, and control on embedded platforms with improved efficiency. This study presents the design and implementation of an autonomous radio-controlled (RC) vehicle prototype capable of lane line detection, obstacle avoidance, and navigation through dynamic path planning. The system integrates image processing and ultrasonic sensing, utilizing Raspberry Pi for vision-based tasks and Arduino Nano for real-time control. Lane line detection is achieved through conventional image processing techniques, providing the basis for local path generation, while traffic sign classification employs a… More > Graphic Abstract

    An Embedded Computer Vision Approach to Environment Modeling and Local Path Planning in Autonomous Mobile Robots

  • Open Access

    ARTICLE

    Spatial Analysis Tool for Urban Environmental Quality Assessment: Leveraging Geoinformatics and GIS

    Igor Musikhin*

    Revue Internationale de Géomatique, Vol.34, pp. 939-957, 2025, DOI:10.32604/rig.2025.071168 - 09 December 2025

    Abstract Urban environmental quality research is crucial, as cities become competitive centers concentrating human talent, industrial activity, and financial resources, contributing significantly to national economies. Municipal and government priorities include retaining residents, preventing skilled worker outflow, and meeting the evolving needs of urban populations. The study presents the development and application of a scenario-based spatial analysis tool for assessing urban environmental quality at a detailed spatial scale within the city of Novosibirsk. Using advanced geoinformatics, GIS techniques, and an expert knowledge base, the tool integrates diverse thematic data layers with user-defined scenarios to compute and visualize… More >

  • Open Access

    ARTICLE

    State-Space Reduction Techniques Exploiting Specific Constraints for Quantum Search Initialization, Application to an Outage Planning Problem

    Rodolphe Griset1,#,*, Ioannis Lavdas2,§, Jiří Guth Jarkovský3

    Journal of Quantum Computing, Vol.7, pp. 81-105, 2025, DOI:10.32604/jqc.2025.066064 - 08 December 2025

    Abstract Quantum search has emerged as one of the most promising fields in quantum computing. State-of-the-art quantum search algorithms enable the search for specific elements in a distribution by monotonically increasing the density of these elements relative to the rest of the distribution. These kinds of algorithms demonstrate a theoretical quadratic speed-up on the number of queries compared to classical search algorithms in unstructured spaces. Unfortunately, the major part of the existing literature applies quantum search to problems whose size grows exponentially with the input size without exploiting any specific problem structure, rendering this kind of… More >

  • Open Access

    ARTICLE

    Three-Dimensional Trajectory Planning for Robotic Manipulators Using Model Predictive Control and Point Cloud Optimization

    Zeinel Momynkulov1,2, Azhar Tursynova1,2,*, Olzhas Olzhayev1,2, Akhanseri Ikramov1,2, Sayat Ibrayev1, Batyrkhan Omarov1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 891-918, 2025, DOI:10.32604/cmes.2025.068615 - 30 October 2025

    Abstract Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position, velocity, and acceleration must be satisfied. Conventional geometric planners emphasize path smoothness but often ignore dynamic feasibility, motivating control-aware trajectory generation. This study presents a novel model predictive control (MPC) framework for three-dimensional trajectory planning of robotic manipulators that integrates second-order dynamic modeling and multi-objective parameter optimization. Unlike conventional interpolation techniques such as cubic splines, B-splines, and linear interpolation, which neglect physical constraints and system dynamics, the proposed method generates dynamically feasible trajectories by directly optimizing over acceleration inputs while… More >

  • Open Access

    ARTICLE

    Planning and Evaluation Method of MMC-MTEDC Network Construction of Urban Power Grid

    Jing Li1, Yinghua Xie1, Guoxing Wu1, Ming Xiao1, Guoteng Wang2, Keheng Lou2, Ying Huang2,*

    Energy Engineering, Vol.122, No.11, pp. 4475-4495, 2025, DOI:10.32604/ee.2025.068711 - 27 October 2025

    Abstract With the accelerating urbanization process, the load demand of urban power grids is constantly increasing, giving rise to a batch of ultra-large urban power grids featuring large electricity demand, dense load distribution, and tight construction land constraints. This paper establishes a network planning method for urban power grids based on series reactors and MMC-MTEDC, focusing on four aspects: short-circuit current suppression, accommodation of external power supply, flexible inter-regional power support, and voltage stability enhancement in load centers. It proposes key indicators including node short-circuit current margin, line thermal stability margin, maximum fault-induced regional power loss,… More >

Displaying 1-10 on page 1 of 144. Per Page