Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study

    Farman Saifi1,*, Mohd Javaid1, Abid Haleem1, S. M. Anas2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2747-2777, 2024, DOI:10.32604/cmes.2024.051490 - 08 July 2024

    Abstract Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infrastructure systems and networks capable of withstanding blast loading. Initially centered on high-profile facilities such as embassies and petrochemical plants, this concern now extends to a wider array of infrastructures and facilities. Engineers and scholars increasingly prioritize structural safety against explosions, particularly to prevent disproportionate collapse and damage to nearby structures. Urbanization has further amplified the reliance on oil and gas pipelines, making them vital for urban life and prime targets for terrorist activities. Consequently, there is a growing imperative for computational… More >

  • Open Access

    ARTICLE

    CFD-Based Optimization of Hot Primary-Air Pipe Networks in Power Plant Milling Systems

    Qingyun Yan1, You Li2, Yuanhong Zhu3, Kui Cheng3, Xueli Huang3, Cong Qi3, Xuemin Ye2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 623-636, 2020, DOI:10.32604/fdmp.2020.09669 - 25 May 2020

    Abstract A hot primary-air pipe system is the bridge connecting an air-preheater with a coal mill in power generation stations. The effective geometrical configuration of the pipe network greatly affects the air flow distribution and consequently influences the safe and economic operation of milling systems in power stations. In order to improve the properties of the air flow, in the present work the SIMPLEC method is used to simulate numerically the flow field for the original layout of the system. As a result, the internal mechanisms influencing the uneven pressure drop in each branch are explored More >

Displaying 1-10 on page 1 of 2. Per Page