Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Comparative Analyses of Physiological and Transcriptomic Responses Reveal Chive (Allium ascalonicum L.) Bolting Tolerance Mechanisms

    Siyang Ou1, Liuyan Yang1, Tingting Yuan1, Mutong Li1, Guohui Liao2, Wanping Zhang1, Guangdong Geng1,*, Suqin Zhang1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.8, pp. 2441-2460, 2025, DOI:10.32604/phyton.2025.068368 - 29 August 2025

    Abstract Chive (Allium ascalonicum L.), a seeding-vernalization-type vegetable, is prone to bolting. To explore the physiological and molecular mechanisms of its bolting, bolting-prone (‘BA’) and bolting-resistant (‘WA’) chives were sampled at the vegetative growth, floral bud differentiation, and bud emergence stages. No bolting was observed in bolting-resistant ‘WA’ on the 130th day after planting, whereas the bolting reached 39.22% in bolting-prone ‘BA’, which was significantly higher than that of ‘WA’. The contents of gibberellins, abscisic acid, and zeatin riboside after floral bud differentiation in ‘WA’ were significantly less than in ‘BA’, whereas the indoleacetic acid content in… More >

  • Open Access

    ARTICLE

    Physiological and Transcriptome Analysis Illuminates the Molecular Mechanisms of the Drought Resistance Improved by Alginate Oligosaccharides in Triticum aestivum L.

    Yunhong Zhang1,2,*, Yonghui Yang1,2, Jiawei Mao1,2

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 185-212, 2024, DOI:10.32604/phyton.2023.046811 - 27 February 2024

    Abstract Alginate oligosaccharides (AOS) enhance drought resistance in wheat (Triticum aestivum L.), but the definite mechanisms remain largely unknown. The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000. The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress. A total of 10,064 and 15,208 differentially expressed unigenes (DEGs) obtained from the AOS treatment and control samples at 24 and 72 h after dehydration, respectively, were mainly enriched in the biosynthesis of… More >

Displaying 1-10 on page 1 of 2. Per Page