Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (295)
  • Open Access

    ARTICLE

    Analysis and Defense of Attack Risks under High Penetration of Distributed Energy

    Boda Zhang1,*, Fuhua Luo1, Yunhao Yu1, Chameiling Di1, Ruibin Wen1, Fei Chen2

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.069323 - 27 January 2026

    Abstract The increasing intelligence of power systems is transforming distribution networks into Cyber-Physical Distribution Systems (CPDS). While enabling advanced functionalities, the tight interdependence between cyber and physical layers introduces significant security challenges and amplifies operational risks. To address these critical issues, this paper proposes a comprehensive risk assessment framework that explicitly incorporates the physical dependence of information systems. A Bayesian attack graph is employed to quantitatively evaluate the likelihood of successful cyber attacks. By analyzing the critical scenario of fault current path misjudgment, we define novel system-level and node-level risk coupling indices to precisely measure the… More >

  • Open Access

    ARTICLE

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

    Francisco Daniel García1,2, Solange Nicole Aigner1,2, Natalia Raffaeli3, Antonio José Barotto3, Eleana Spavento3, Mariano Martín Escobar1,4, Marcela Angela Mansilla1,4, Alejandro Bacigalupe1,4,*

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0181 - 23 January 2026

    Abstract This study explores the use of black soldier fly larvae protein as a bio-based adhesive to produce particleboards from sugarcane bagasse. A comprehensive evaluation was conducted, including rheological characterization of the adhesive and physical–mechanical testing of the panels according to European standards. The black soldier fly larvae-based adhesive exhibited gel-like viscoelastic behavior, rapid partial structural recovery after shear, and favorable application properties. Particleboards manufactured with this adhesive and sugarcane bagasse achieved promising mechanical performance, with modulus of rupture and modulus of elasticity values of 30.2 and 3500 MPa, respectively. Internal bond strength exceeded 0.4 MPa,… More > Graphic Abstract

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

  • Open Access

    ARTICLE

    Blockchain and Smart Contracts with Barzilai-Borwein Intelligence for Industrial Cyber-Physical System

    Gowrishankar Jayaraman1, Ashok Kumar Munnangi2, Ramesh Sekaran3, Arunkumar Gopu3, Manikandan Ramachandran4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071124 - 12 January 2026

    Abstract Industrial Cyber-Physical Systems (ICPSs) play a vital role in modern industries by providing an intellectual foundation for automated operations. With the increasing integration of information-driven processes, ensuring the security of Industrial Control Production Systems (ICPSs) has become a critical challenge. These systems are highly vulnerable to attacks such as denial-of-service (DoS), eclipse, and Sybil attacks, which can significantly disrupt industrial operations. This work proposes an effective protection strategy using an Artificial Intelligence (AI)-enabled Smart Contract (SC) framework combined with the Heterogeneous Barzilai–Borwein Support Vector (HBBSV) method for industrial-based CPS environments. The approach reduces run time… More >

  • Open Access

    ARTICLE

    Ultrasonic Defect Localization Correction Method under the Influence of Non-Uniform Temperature Field

    Jianhua Du1, Shaofeng Wang1, Ting Gao2, Huiwen Sun2, Wenjing Liu1,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071189 - 08 January 2026

    Abstract In ultrasonic non-destructive testing of high-temperature industrial equipment, sound velocity drift induced by non-uniform temperature fields can severely compromise defect localization accuracy. Conventional approaches that rely on room-temperature sound velocities introduce systematic errors, potentially leading to misjudgment of safety-critical components. Two primary challenges hinder current methods: first, it is difficult to monitor real-time changes in sound velocity distribution within a thermal gradient; second, traditional uniform-temperature correction models fail to capture the nonlinear dependence of material properties on temperature and their effect on ultrasonic velocity fields. Here, we propose a defect localization correction method based on… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Damage Behavior in Graphene-Reinforced Aluminum Matrix Composite Armatures under Multi-Physical Field Coupling

    Junwen Huo, Haicheng Liang, Weiye Dong, Xiaoming Du*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.073285 - 09 December 2025

    Abstract With the rapid advancement of electromagnetic launch technology, enhancing the structural stability and thermal resistance of armatures has become essential for improving the overall efficiency and reliability of railgun systems. Traditional aluminum alloy armatures often suffer from severe ablation, deformation, and uneven current distribution under high pulsed currents, which limit their performance and service life. To address these challenges, this study employs the Johnson–Cook constitutive model and the finite element method to develop armature models of aluminum matrix composites with varying heterogeneous graphene volume fractions. The temperature, stress, and strain of the armatures during operation… More >

  • Open Access

    ARTICLE

    Theoretical Simulation of the Physical Properties of Solar Energy Material α-Cu2Se

    S. H. Fan1,*, Y. S. Song1, H. J. Hou1, H. L. Guo2, S. R. Zhang3

    Chalcogenide Letters, Vol.22, No.12, pp. 987-997, 2025, DOI:10.15251/CL.2025.2212.987 - 01 December 2025

    Abstract Using first-principles calculations, the physical behavior of α-Cu2Se are thoroughly examined. The computed structural parameters align closely with experimental data. Through computational analysis, the electronic properties for α-Cu2Se are determined. Additionally, mechanical characteristics-including bulk modulus B, shear modulus G, Young’s modulus E, and B/G are evaluated under varying pressure conditions. Furthermore, the optical properties are investigated. The study reveals that α-Cu2Se exhibits a direct bandgap of 0.782 eV, indicating its promising potential for optoelectronic applications. More >

  • Open Access

    ARTICLE

    Associations between Work Schedule Type and Physical Activity with Mental Health and Job Stress among Seoul Metro Employees

    Youngho Kim1, Jonghwa Lee2,*

    International Journal of Mental Health Promotion, Vol.27, No.12, pp. 1949-1960, 2025, DOI:10.32604/ijmhp.2025.072560 - 31 December 2025

    Abstract Background: Shift-based occupations have been consistently linked to adverse psychological outcomes; however, limited research has examined how work schedule type and physical activity are jointly associated with mental health and job stress in public transportation employees, a population frequently exposed to irregular hours and safety-critical responsibilities. This study investigated the associations between work schedule type and physical activity with mental health indicators and job stress among Seoul Metro employees. Methods: A cross-sectional survey was administered to 298 full-time male employees of Seoul Metro. Participants were categorized by work schedule (shift vs. regular) and physical activity level… More >

  • Open Access

    ARTICLE

    A Prediction Method for Concrete Mixing Temperature Based on the Fusion of Physical Models and Neural Networks

    Lei Zheng1,*, Hong Pan2,3, Yuelei Ruan2,4, Guoxin Zhang1, Lei Zhang1,*, Jianda Xin1, Zhenyang Zhu1, Jianyao Zhang2,5, Wei Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3217-3241, 2025, DOI:10.32604/cmes.2025.074651 - 23 December 2025

    Abstract As a critical material in construction engineering, concrete requires accurate prediction of its outlet temperature to ensure structural quality and enhance construction efficiency. This study proposes a novel hybrid prediction method that integrates a heat conduction physical model with a multilayer perceptron (MLP) neural network, dynamically fused via a weighted strategy to achieve high-precision temperature estimation. Experimental results on an independent test set demonstrated the superior performance of the fused model, with a root mean square error (RMSE) of 1.59°C and a mean absolute error (MAE) of 1.23°C, representing a 25.3% RMSE reduction compared to More >

  • Open Access

    ARTICLE

    Trust-Aware AI-Enabled Edge Framework for Intelligent Traffic Control in Cyber-Physical Systems

    Khalid Haseeb1, Imran Qureshi2,*, Naveed Abbas1, Muhammad Ali3, Muhammad Arif Shah4, Qaisar Abbas2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4349-4362, 2025, DOI:10.32604/cmes.2025.072326 - 23 December 2025

    Abstract The rapid evolution of smart cities has led to the deployment of Cyber-Physical IoT Systems (CPS-IoT) for real-time monitoring, intelligent decision-making, and efficient resource management, particularly in intelligent transportation and vehicular networks. Edge intelligence plays a crucial role in these systems by enabling low-latency processing and localized optimization for dynamic, data-intensive, and vehicular environments. However, challenges such as high computational overhead, uneven load distribution, and inefficient utilization of communication resources significantly hinder scalability and responsiveness. Our research presents a robust framework that integrates artificial intelligence and edge-level traffic prediction for CPS-IoT systems. Distributed computing for More >

  • Open Access

    ARTICLE

    Theoretical studies of the physical properties of solar material CuAlS2

    G. Yana, S. R. Zhanga,*, H. J. Houb, Z. F. Yinb, H. L. Guoc

    Chalcogenide Letters, Vol.22, No.1, pp. 33-42, 2025, DOI:10.15251/CL.2025.221.33

    Abstract The theoretical approach was employed to comprehensively investigate the structural, dynamical, band structure, optical characteristics, and elastic anisotropy of CuAlS2. The determined lattice parameters (a and c), elastic properties exhibit with the available data. The band structure and density of state indicates that CuAlS2 exhibits semiconductor properties, characterized by a direct band gap measuring approximately 1.791 eV. The mechanical stability and optical properties of CuAlS2 was calculated and analyzed. More >

Displaying 1-10 on page 1 of 295. Per Page