Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Greenhouse Gas Payback of a Solar Photovoltaic System in Northeast Brazil: Effects of the Application of a Solar Coating

    Luiz Felipe Souza Fonseca1, Heitor do Nascimento Andrade1, João Marcelo Fernandes Gualberto de Galiza2, Raphael Abrahão1, Hamid Boleydei3, Silvia Guillén-Lambea4, Monica Carvalho1,*

    Energy Engineering, Vol.122, No.8, pp. 3265-3283, 2025, DOI:10.32604/ee.2025.066218 - 24 July 2025

    Abstract The application of different coatings on solar photovoltaic (PV) panels can be an efficient solution to increase performance and further mitigate the emission of greenhouse gases. This study uses the Life Cycle Assessment (LCA) methodology and the environmental payback concept to analyze the effects of the application of a nano-silica coating on a solar PV system installed in the Brazilian Northeast. Firstly, an uncoated reference 16.4 MW PV system is designed, and the detailed inventory is presented (PV panels, supporting structure, inverters, junction boxes, cables, transportation, maintenance and operation—including the replacement of equipment). The results… More > Graphic Abstract

    Greenhouse Gas Payback of a Solar Photovoltaic System in Northeast Brazil: Effects of the Application of a Solar Coating

  • Open Access

    ARTICLE

    Enhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model

    Umit Cigdem Turhal1, Yasemin Onal1,*, Kutalmis Turhal2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2307-2332, 2025, DOI:10.32604/cmes.2025.064269 - 30 May 2025

    Abstract The reliability and efficiency of photovoltaic (PV) systems are essential for sustainable energy production, requiring accurate fault detection to minimize energy losses. This study proposes a hybrid model integrating Neighborhood Components Analysis (NCA) with a Convolutional Neural Network (CNN) to improve fault detection and diagnosis. Unlike Principal Component Analysis (PCA), which may compromise class relationships during feature extraction, NCA preserves these relationships, enhancing classification performance. The hybrid model combines NCA with CNN, a fundamental deep learning architecture, to enhance fault detection and diagnosis capabilities. The performance of the proposed NCA-CNN model was evaluated against other More > Graphic Abstract

    Enhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model

  • Open Access

    ARTICLE

    Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control

    Ximin Cao*, Xinglong Chen, He Huang, Yanchi Zhang, Qifan Huang

    Energy Engineering, Vol.121, No.4, pp. 1067-1089, 2024, DOI:10.32604/ee.2023.046783 - 26 March 2024

    Abstract Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals. Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system, a multi-time scale optimal scheduling strategy based on model predictive control (MPC) is proposed under the consideration of load optimization. First, load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature, and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation… More >

  • Open Access

    ARTICLE

    An Accurate Dynamic Forecast of Photovoltaic Energy Generation

    Anoir Souissi1,*, Imen Guidara1, Maher Chaabene1, Giuseppe Marco Tina2, Moez Bouchouicha3

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1683-1698, 2022, DOI:10.32604/fdmp.2022.022051 - 27 June 2022

    Abstract The accurate forecast of the photovoltaic generation (PVG) process is essential to develop optimum installation sizing and pragmatic energy planning and management. This paper proposes a PVG forecast model for a PVG/Battery installation. The forecasting strategy is built on a Medium-Term Energy Forecasting (MTEF) approach refined dynamically every hour (Dynamic Medium-Term Energy Forecasting (DMTEF)) and adjusted by means of a Short-Term Energy Forecasting (STEF) strategy. The MTEF predicts the generated energy for a day ahead based on the PVG of the last 15 days. As for STEF, it is a combination between PVG Short-Term (ST) More >

  • Open Access

    ARTICLE

    Energy Management of an Isolated Wind/Photovoltaic Microgrid Using Cuckoo Search Algorithm

    Hani Albalawi1,3, Ahmed M. Kassem2, Sherif A. Zaid1,3,4,*, Abderrahim Lakhouit5, Muhammed A. Arshad6

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 2051-2066, 2022, DOI:10.32604/iasc.2022.026032 - 25 May 2022

    Abstract This paper introduces a renewable-energy-based microgrid that includes Photovoltaic (PV) energy and wind energy generation units. Also, an energy storage system is present. The proposed microgrid is loaded with a constant load impedance. To improve the performance of the proposed microgrid, an optimal control algorithm utilizing Cuckoo Search Algorithm (CSA) is adapted. It has many merits such as fast convergence, simple tunning, and high efficiency. Commonly, the PV and wind energies are suitable for supplying loads under normal conditions. However, the energy storage system recovers the excess load demand. The load frequency and voltage are… More >

  • Open Access

    REVIEW

    The Hidden-Layers Topology Analysis of Deep Learning Models in Survey for Forecasting and Generation of the Wind Power and Photovoltaic Energy

    Dandan Xu1, Haijian Shao1,*, Xing Deng1,2, Xia Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 567-597, 2022, DOI:10.32604/cmes.2022.019245 - 14 March 2022

    Abstract As wind and photovoltaic energy become more prevalent, the optimization of power systems is becoming increasingly crucial. The current state of research in renewable generation and power forecasting technology, such as wind and photovoltaic power (PV), is described in this paper, with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting. The methods for forecasting wind power and PV production. The physical model, statistical learning method, and machine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production. More >

  • Open Access

    ARTICLE

    Conditional Probability Approach for Fault Detection in Photovoltaic Energy Farms

    Nagy I. Elkalashy1,*, Ibrahim B. M. Taha2

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 1109-1120, 2022, DOI:10.32604/csse.2022.023509 - 08 February 2022

    Abstract Detection of electric faults in photovoltaic (PV) farms enhances a sustainable service continuity of farm energy generation. In this paper, a probabilistic function is introduced to detect the faults in the PV farms. The conditional probability functions are adopted to detect different fault conditions such as internal string faults, string-to-string faults, and string-to-negative terminal faults. As the diodes are important to make the PV farms in-service safely during the faults, the distribution currents of these faults are evaluated with different concepts of diode consideration as well as without considering any diode installation. This part of… More >

Displaying 1-10 on page 1 of 7. Per Page