Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    PROCEEDINGS

    A Thermodynamically Consistent Phase-Field-Micromechanics Model of Solid-State Sintering with Coupled Diffusion and Diffusion-Induced Shrinkage

    Qingcheng Yang1,*, Arkadz Kirshtein2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011229

    Abstract Sintering is a pivotal technology for processing ceramic and metallic powders into solid objects. A profound understanding of microstructure evolution during sintering is essential for manufacturing products with tailored properties. While various phase-field models have been proposed to simulate microstructure evolution in solid-state sintering, correctly incorporating the densification assumption—where particles move toward each other by rigid body motion—remains a challenge. The fundamental obstacle lies in the ad hoc treatment of particle motion, where the thermodynamical driving force cannot be derived from the system's free energy. In this work, we present a novel phase-field micromechanics model More >

  • Open Access

    PROCEEDINGS

    Integrated Multiscale Unified Phase-Field Modellings (UPFM)

    Yuhong Zhao1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012951

    Abstract For a long time, the phase-field method has been considered as a mesoscale phenomenological method lacking physical accuracy and unable to be associated with the mechanical/functional properties of materials, etc. Some misunderstandings existing in these viewpoints need to be clarified. Therefore, it is necessary to propose or adopt the perspective of “unified or unifying phase-field modeling (UPFM)” to address these issues, which means that phase-field modeling has multiple unifications. Specifically, the phase-field method is the perfect unity of thermodynamics and kinetics, the unity of multi-scale models from micro- to meso- and then to macroscopic scale, More >

  • Open Access

    PROCEEDINGS

    Phase-Field Modeling of Interfacial Fracture in Quasicrystal Composites

    Hongzhao Li1, Peidong Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012711

    Abstract Quasicrystals (QCs) are a new class of functional and structural materials with unusual properties, which have quasi-periodic translational symmetry and non-crystallographic rotational symmetry. Due to the special arrangement of atoms, compared with traditional materials, QCs have high strength, high hardness, and high wear resistance, and can be used as a particle reinforcement phase of polymer or metal matrix composites to improve the performance of materials. QC composites are a special type of composites in which the high strength and hardness of QCs can effectively enhance the mechanical properties of the composites while maintaining the lightweight… More >

  • Open Access

    PROCEEDINGS

    Thermal Shock Fracture of Functionally Graded Materials Based on the Phase-Field Fracture Method

    Yong Pang1, Peidong Li1,*, Dingyu Li2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011660

    Abstract The thermo-elastic fracture problems of functionally graded materials (FGMs) are thoroughly investigated based on a phase field model. In this model, the material constants and fracture toughness vary with the spatial coordinates, the thermal conductivity and stiffness constants in the damaged regions are degraded by the phase-field variable, and the crack evolution is driven by the variation of elastic energy induced by the thermo-mechanical loading. Therefore, the temperature, mechanical and damage fields are coupled with each other. The finite element discretization of the governing equations and the numerical implementation details are provided. The validation of… More >

  • Open Access

    REVIEW

    Phase-Field Simulation of Sintering Process: A Review

    Ming Xue, Min Yi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1165-1204, 2024, DOI:10.32604/cmes.2024.049367 - 20 May 2024

    Abstract Sintering, a well-established technique in powder metallurgy, plays a critical role in the processing of high melting point materials. A comprehensive understanding of structural changes during the sintering process is essential for effective product assessment. The phase-field method stands out for its unique ability to simulate these structural transformations. Despite its widespread application, there is a notable absence of literature reviews focused on its usage in sintering simulations. Therefore, this paper addresses this gap by reviewing the latest advancements in phase-field sintering models, covering approaches based on energy, grand potential, and entropy increase. The characteristics More >

  • Open Access

    PROCEEDINGS

    Oscillations of Rapid Fracture in Phase Field Modeling

    Jun Zeng1, Fucheng Tian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09636

    Abstract Instability in dynamic fracture suppresses crack velocity from reaching theoretical limit predicted by the classical linear elastic fracture mechanics (LEFM). In thin systems, crack can accelerate to near the theoretical limiting velocity without micro-branching instability. A dynamic oscillatory instability is observed at such extreme crack speed. This sinusoidal oscillation was further found to be governed by intrinsic nonlinear scale. Using a dynamic phase-field model (PFM) with no attenuation of wave speed, we successfully reproduce the oscillations in the framework of non-linear deformation. The used PFM model based on Griffith's theory and derived from the nonconservative… More >

  • Open Access

    PROCEEDINGS

    Uncovering the Intrinsic Deficiencies of Phase-Field Modeling for Dynamic Fracture

    Jiale Ji1,*, Mengnan Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09632

    Abstract The phase-field fracture (PFF) approach has achieved great triumphs in modeling quasi-static fracture. Nevertheless, its reliability in serving dynamic fractures still leaves something to be desired, such as the prediction of the limiting crack velocity. Using a pre-strained fracture configuration, we discovered a disturbing phenomenon that the crack limiting speed identified by the dynamic PFF model is not related to the specific material, which seriously deviates from the experimental observation. To ascertain the truth, we first ruled out the correlation between the limiting crack velocity on the phase-field characteristic scale and external loading. Afterward, by More >

  • Open Access

    ARTICLE

    Improved Staggered Algorithm for Phase-Field Brittle Fracture with the Local Arc-Length Method

    Zhijian Wu, Li Guo*, Jun Hong

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 611-636, 2023, DOI:10.32604/cmes.2022.020694 - 24 August 2022

    Abstract The local arc-length method is employed to control the incremental loading procedure for phase-field brittle fracture modeling. An improved staggered algorithm with energy and damage iterative tolerance convergence criteria is developed based on the residuals of displacement and phase-field. The improved staggered solution scheme is implemented in the commercial software ABAQUS with user-defined element subroutines. The layered system of finite elements is utilized to solve the coupled elastic displacement and phase-field fracture problem. A one-element benchmark test compared with the analytical solution was conducted to validate the feasibility and accuracy of the developed method. Our More >

  • Open Access

    ABSTRACT

    Data Assimilation for Grain Growth Prediction via Multi-Phase-Field Models

    Hiromichi Nagao1,2,*, Shin-ichi Ito1,2, Tadashi Kasuya3, Junya Inoue4,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 127-127, 2019, DOI:10.32604/icces.2019.05384

    Abstract Data assimilation (DA) is a computational technique to integrate numerical simulation models and observational/experimental data based on Bayesian statistics. DA is accepted as an essential methodology for the modern weather forecasting, and is applied to various fields of science including structural materials science. We propose a DA methodology to evaluate unobservable parameters involved in multi-phase-field models with the aim of accurately predicting the observed grain growth, such as in metals and alloys. This approach integrates models and a set of observational image data of grain structures. Since the set of image data is not a… More >

Displaying 1-10 on page 1 of 9. Per Page