Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Laminar and Turbulent Characteristics of the Acoustic/Fluid Dynamics Interactions in a Slender Simulated Solid Rocket Motor Chamber

    Abdelkarim Hegab*, Faisal Albatati, Mohammed Algarni

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 437-468, 2021, DOI:10.32604/cmes.2021.014690 - 19 April 2021

    Abstract In this paper, analytical, computational, and experimental studies are integrated to examine unsteady acoustic/vorticity transport phenomena in a solid rocket motor chamber with end-wall disturbance and side-wall injection. Acoustic-fluid dynamic interactions across the chamber may generate intense unsteady vorticity with associated shear stresses. These stresses may cause scouring and, in turn, enhance the heat rate and erosional burning of solid propellant in a real rocket chamber. In this modelling, the unsteady propellant gasification is mimicked by steady-state flow disturbed by end-wall oscillations. The analytical approach is formulated using an asymptotic technique to reduce the full… More >

  • Open Access

    ARTICLE

    A Nonlinear Dynamic Model for Periodic Motion of Slender Threadline Structures

    Jinling Long1,2, Bingang Xu1,3, Xiaoming Tao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.4, pp. 273-298, 2011, DOI:10.3970/cmes.2011.072.273

    Abstract Moving slender threadline structures are widely used in various engineering fields. The dynamics of these systems is sometimes time dependent but in most cases follows a periodic pattern, and slender yarn motion in textile engineering is a typical problem of this category. In the present paper, we propose a nonlinear approach to model the dynamic behavior of slender threadline structures with a real example in the analysis of slender yarn motion in spinning. Moving boundary conditions of yarn are derived and a consequence of the perturbation analysis for the dimensionless governing equations provides the zero More >

  • Open Access

    ARTICLE

    Sensitivity of Eigen Value to Damage and Its Identification

    B.K.Raghuprasad1, N.Lakshmanan2, N.Gopalakrishnan2, K.Muthumani2

    Structural Durability & Health Monitoring, Vol.4, No.3, pp. 117-144, 2008, DOI:10.3970/sdhm.2008.004.117

    Abstract The reduction in natural frequencies, however small, of a civil engineering structure, is the first and the easiest method of estimating its impending damage. As a first level screening for health-monitoring, information on the frequency reduction of a few fundamental modes can be used to estimate the positions and the magnitude of damage in a smeared fashion. The paper presents the Eigen value sensitivity equations, derived from first-order perturbation technique, for typical infra-structural systems like a simply supported bridge girder, modelled as a beam, an end-bearing pile, modelled as an axial rod and a simply… More >

  • Open Access

    ARTICLE

    Perfectly matched layer for acoustic waveguide modeling --- benchmark calculations and perturbation analysis

    Ya Yan Lu1, Jianxin Zhu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.22, No.3, pp. 235-248, 2007, DOI:10.3970/cmes.2007.022.235

    Abstract The perfectly matched layer (PML) is a widely used technique for truncating unbounded domains in numerical simulations of wave propagation problems. In this paper, the PML technique is used with a standard one-way model to solve a benchmark problem for underwater acoustics modeling. Accurate solutions are obtained with a PML layer with a thickness of only a quarter of the wavelength. The effect of a PML is analyzed in a perturbation analysis for waveguides. More >

Displaying 1-10 on page 1 of 4. Per Page