Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Weak Fault Feature Extraction of the Rotating Machinery Using Flexible Analytic Wavelet Transform and Nonlinear Quantum Permutation Entropy

    Lili Bai1,*, Wenhui Li1, He Ren1,2, Feng Li1, Tao Yan1, Lirong Chen3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4513-4531, 2024, DOI:10.32604/cmc.2024.051348 - 20 June 2024

    Abstract Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery, where weak fault characteristic signals hinder accurate fault state representation, we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform (FAWT) with Nonlinear Quantum Permutation Entropy. FAWT, leveraging fractional orders and arbitrary scaling and translation factors, exhibits superior translational invariance and adjustable fundamental oscillatory characteristics. This flexibility enables FAWT to provide well-suited wavelet shapes, effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults. In our approach,… More >

  • Open Access

    ARTICLE

    Cloud Resource Integrated Prediction Model Based on Variational Modal Decomposition-Permutation Entropy and LSTM

    Xinfei Li2, Xiaolan Xie1,2,*, Yigang Tang2, Qiang Guo1,2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2707-2724, 2023, DOI:10.32604/csse.2023.037351 - 28 July 2023

    Abstract Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters. We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition (VMD)-Permutation entropy (PE) and long short-term memory (LSTM) neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data. The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components, which solves the signal decomposition algorithm’s end-effect and modal confusion problems.… More >

  • Open Access

    ARTICLE

    Short-Term Prediction of Photovoltaic Power Generation Based on LMD Permutation Entropy and Singular Spectrum Analysis

    Wenchao Ma*

    Energy Engineering, Vol.120, No.7, pp. 1685-1699, 2023, DOI:10.32604/ee.2023.025404 - 04 May 2023

    Abstract The power output state of photovoltaic power generation is affected by the earth's rotation and solar radiation intensity. On the one hand, its output sequence has daily periodicity; on the other hand, it has discrete randomness. With the development of new energy economy, the proportion of photovoltaic energy increased accordingly. In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation, this paper proposes the short-term prediction of photovoltaic power generation based on the improved multi-scale permutation entropy, local mean decomposition… More >

Displaying 1-10 on page 1 of 3. Per Page