Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Passive periodic motion of an asymmetric spring loaded inverted pendulum hopping robot

    Yingge Ni1, Xiangyan Meng2

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.39, No.1, pp. 1-7, 2023, DOI:10.23967/j.rimni.2023.01.002 - 13 January 2023

    Abstract For improving the energy efficiency of hopping robot, an asymmetric spring loaded inverted pendulum hopping model with leg mass is considered. The period orbit problem of two-legged hopping robot is investigated. Firstly, the hybrid dynamic model is constructed. Then the passive hopping gaits are found using quasi-newton optimization method. Secondly, a PD controller is implemented to track the desired pitch trajectory of the body. Through applying control during stance phase, period orbits of the robot with offset body mass is obtained. Finally, the effect of the location of the leg mass and the body mass More >

  • Open Access

    ARTICLE

    Constrained Optimization Multi-dimensional Harmonic Balance Method for Quasi-periodic Motions of Nonlinear Systems

    Haitao Liao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.3, pp. 207-234, 2013, DOI:10.3970/cmes.2013.095.207

    Abstract The constrained optimization multi-dimensional harmonic balance method for calculating the quasi-periodic solutions of nonlinear systems is presented. The problem of determining the worst quasi-periodic response is transformed into a nonlinear optimization problem with nonlinear equality constraints. The general nonlinear equality constraints are built using a set of nonlinear algebraic equations which is derived using the multi-dimensional harmonic balance method. The Multi- Start algorithm is adopted to solve the resulting constrained maximization problem. Finally, the validity of the proposed method is demonstrated with a Duffing oscillator and numerical case studies for problems with uncertainties are performed More >

  • Open Access

    ARTICLE

    A Nonlinear Dynamic Model for Periodic Motion of Slender Threadline Structures

    Jinling Long1,2, Bingang Xu1,3, Xiaoming Tao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.4, pp. 273-298, 2011, DOI:10.3970/cmes.2011.072.273

    Abstract Moving slender threadline structures are widely used in various engineering fields. The dynamics of these systems is sometimes time dependent but in most cases follows a periodic pattern, and slender yarn motion in textile engineering is a typical problem of this category. In the present paper, we propose a nonlinear approach to model the dynamic behavior of slender threadline structures with a real example in the analysis of slender yarn motion in spinning. Moving boundary conditions of yarn are derived and a consequence of the perturbation analysis for the dimensionless governing equations provides the zero More >

Displaying 1-10 on page 1 of 3. Per Page