Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (61)
  • Open Access

    ARTICLE

    An Elastoplastic Fracture Model Based on Bond-Based Peridynamics

    Liping Zu1, Yaxun Liu1, Haoran Zhang1, Lisheng Liu2,*, Xin Lai2,*, Hai Mei2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2349-2371, 2024, DOI:10.32604/cmes.2024.050488

    Abstract Fracture in ductile materials often occurs in conjunction with plastic deformation. However, in the bond-based peridynamic (BB-PD) theory, the classic mechanical stress is not defined inherently. This makes it difficult to describe plasticity directly using the classical plastic theory. To address the above issue, a unified bond-based peridynamics model was proposed as an effective tool to solve elastoplastic fracture problems. Compared to the existing models, the proposed model directly describes the elastoplastic theory at the bond level without the need for additional calculation means. The results obtained in the context of this model are shown More >

  • Open Access

    ARTICLE

    Finite Difference-Peridynamic Differential Operator for Solving Transient Heat Conduction Problems

    Chunlei Ruan1,2,*, Cengceng Dong1, Zeyue Zhang1, Boyu Chen1, Zhijun Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2707-2728, 2024, DOI:10.32604/cmes.2024.050003

    Abstract Transient heat conduction problems widely exist in engineering. In previous work on the peridynamic differential operator (PDDO) method for solving such problems, both time and spatial derivatives were discretized using the PDDO method, resulting in increased complexity and programming difficulty. In this work, the forward difference formula, the backward difference formula, and the centered difference formula are used to discretize the time derivative, while the PDDO method is used to discretize the spatial derivative. Three new schemes for solving transient heat conduction equations have been developed, namely, the forward-in-time and PDDO in space (FT-PDDO) scheme,… More >

  • Open Access

    ARTICLE

    A Coupled Thermomechanical Crack Propagation Behavior of Brittle Materials by Peridynamic Differential Operator

    Tianyi Li1,2, Xin Gu2, Qing Zhang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 339-361, 2024, DOI:10.32604/cmes.2024.047566

    Abstract This study proposes a comprehensive, coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic differential operator (PDDO), eliminating the need for calibration procedures. The model employs a multi-rate explicit time integration scheme to handle varying time scales in multi-physics systems. Through simulations conducted on granite and ceramic materials, this model demonstrates its effectiveness. It successfully simulates thermal damage behavior in granite arising from incompatible mineral expansion and accurately calculates thermal crack propagation in ceramic slabs during quenching. To account for material heterogeneity, the More >

  • Open Access

    ARTICLE

    The Boundary Element Method for Ordinary State-Based Peridynamics

    Xue Liang1,2, Linjuan Wang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2807-2834, 2024, DOI:10.32604/cmes.2024.046770

    Abstract The peridynamics (PD), as a promising nonlocal continuum mechanics theory, shines in solving discontinuous problems. Up to now, various numerical methods, such as the peridynamic mesh-free particle method (PD-MPM), peridynamic finite element method (PD-FEM), and peridynamic boundary element method (PD-BEM), have been proposed. PD-BEM, in particular, outperforms other methods by eliminating spurious boundary softening, efficiently handling infinite problems, and ensuring high computational accuracy. However, the existing PD-BEM is constructed exclusively for bond-based peridynamics (BBPD) with fixed Poisson’s ratio, limiting its applicability to crack propagation problems and scenarios involving infinite or semi-infinite problems. In this paper,… More >

  • Open Access

    ARTICLE

    Sub-Homogeneous Peridynamic Model for Fracture and Failure Analysis of Roadway Surrounding Rock

    Shijun Zhao1, Qing Zhang2, Yusong Miao1, Weizhao Zhang3, Xinbo Zhao1, Wei Xu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3167-3187, 2024, DOI:10.32604/cmes.2023.045015

    Abstract The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity. To address these complexities, this study employs non-local Peridynamics (PD) theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force. Additionally, modifications to the traditional bond-based PD model are made. By considering the micro-structure of coal-rock materials within a uniform discrete model, heterogeneity characterized by bond random pre-breaking is introduced. This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity, rendering the PD model suitable for analyzing the deformation… More >

  • Open Access

    PROCEEDINGS

    An Efficient Peridynamics Based Statistical Multiscale Method for Fracture in Composite Structure with Randomly Distributed Particles

    Zihao Yang1, Shaoqi Zheng1, Fei Han2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09250

    Abstract This paper proposes a peridynamics-based statistical multiscale (PSM) framework to simulate the macroscopic structure fracture with high efficiency. The heterogeneities of composites, including the shape, spatial distribution and volume fraction of particles, are characterized within the representative volume elements (RVEs), and their impact on structure failure are extracted as two types of peridynamic parameters, namely, statistical critical stretch and equivalent micromodulus. At the microscale level, a bondbased peridynamic (BPD) model with energy-based micromodulus correction technique is introduced to simulate the fracture in RVEs, and then the computational model of statistical critical stretch is established through… More >

  • Open Access

    PROCEEDINGS

    A Modified Rate-Dependent Peridynamic Model with Rotation Effect for Dynamic Mechanical Behavior of Ceramic Materials

    Yaxun Liu1,2, Lisheng Liu1,2,*, Hai Mei1,2, Qiwen Liu1,2, Xin Lai1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09007

    Abstract As a mathematical expression of the dynamic mechanical behavior, the constitutive model plays an indispensable role in numerical simulations of ceramic materials. The current bond-based peridynamic constitutive models can accurately describe the dynamic mechanical behavior of partial ceramic materials under impact loading, however, the predicted value of the Poisson’s ratio is 0.25, which is not true for most of the known ceramic materials. Herein, based on the existing bond-based peridynamic constitutive model, the current study utilizes the description of tangential bond force and considers the influence of bond force on rotation to accurately predict the… More >

  • Open Access

    PROCEEDINGS

    Peridynamic Simulation of Pellet-Clad Mechanical Interaction in Nuclear Fuel Rods

    Qiqing Liu1, Yin Yu1, Y.L. Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09220

    Abstract The thermomechanical response and potential cracking in nuclear fuel rods are extremely important for nuclear safety analysis. The Pellet-Clad Mechanical Interaction (PCMI) is a significant factor for the thermomechanical behaviors of pellet and clad. This study presents a PCMI model based on ordinary statebased peridynamic (OSB-PD) theory, which considering the heat transfer through the gap and contact heat transfer between pellet and clad. The two-dimensional (2D) models are constructed through irregular nonuniform discretization. The pellet model includes the random variability of the critical stretch of each bond based on normal distribution. The contact model with… More >

  • Open Access

    PROCEEDINGS

    Effects of Material Heterogeneity on the Blast-Induced Rock Crack Initiation and Propagation

    Shuyu Wang1, Linjuan Wang1,*, Yunteng Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09217

    Abstract Material heterogeneity plays an important role in the blasting induced rock fracture. However, the investigation of the effects of material heterogeneity is limited by the numerical methods for dynamic fracture. In the work, we propose a peridynamic model for brittle rock with heterogeneous micro-modulus and critical stretch to investigate the effects of material heterogeneity on the blast-induced rock crack initiation and propagation. The discretization in polar coordinates is introduced into the proposed model to avoid the fallacious directional guidance to the crack initiation around the hole. The proposed model satisfies the More >

  • Open Access

    PROCEEDINGS

    Chemo-Mechanical Peridynamic Simulation of Dynamic Fracture-Pattern Formation in Lithium-Ion Batteries

    Xiaofei Wang1, Qi Tong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09181

    Abstract Mechanical failure due to lithium-ion diffusion is one of the main obstacles to fulfill the potential of the electrode materials. Various fracture patterns in different electrode structures are observed in practice, which may have a profound impact on the performance and the service life of electrodes during operation. However, the mechanisms are largely unclear and still lack systematic understanding. Here we propose a coupled chemo-mechanical model based on peridynamics [1] and use it to study the dynamic fracturepattern formation in electrode materials and solid electrolytes during lithiation/delithiation cycles. We found in hollow core-shell nanowires that More >

Displaying 1-10 on page 1 of 61. Per Page