Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    Fluid-Related Performances and Compressive Strength of Clinker-Free Cementitious Backfill Material Based on Phosphate Tailings

    Jin Yang1,2, Senye Liu1, Xingyang He1,2,*, Ying Su1,2, Jingyi Zeng2, Bohumír Strnadel1,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2077-2090, 2024, DOI:10.32604/fdmp.2024.050360 - 23 August 2024

    Abstract Phosphate tailings are usually used as backfill material in order to recycle tailings resources. This study considers the effect of the mix proportions of clinker-free binders on the fluidity, compressive strength and other key performances of cementitious backfill materials based on phosphate tailings. In particular, three solid wastes, phosphogypsum (PG), semi-aqueous phosphogypsum (HPG) and calcium carbide slag (CS), were selected to activate wet ground granulated blast furnace slag (WGGBS) and three different phosphate tailings backfill materials were prepared. Fluidity, rheology, settling ratio, compressive strength, water resistance and ion leaching behavior of backfill materials were determined.… More > Graphic Abstract

    Fluid-Related Performances and Compressive Strength of Clinker-Free Cementitious Backfill Material Based on Phosphate Tailings

  • Open Access

    ARTICLE

    Experimental and Numerical Evaluation of the Cavitation Performances of Self-Excited Oscillating Jets

    Yuanyuan Zhao1, Fujian Zhao2, Guohui Li3, Wei Xu4,*, Xiuli Wang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1883-1901, 2024, DOI:10.32604/fdmp.2024.047298 - 06 August 2024

    Abstract Self-excited oscillating jets (SOJ) are used in several practical applications. Their performances are significantly affected by structural parameters and the target distance. In this study, a geometric model of the SOJ nozzle accounting for multiple structural parameters is introduced, then the related cavitation performances and the optimal target distance are investigated using a Large-Eddy Simulation (LES) approach. Results are also provided about an experiment, which was conducted to validate the simulation results. By analyzing the evolution of the vapor volume fraction at the nozzle outlet, a discussion is presented about the effect of the aforementioned… More >

  • Open Access

    ARTICLE

    Physical-Rheological Properties and Performances of Rejuvenated (Styrene-Butadiene-Styrene) Asphalt with Polymerized-MDI and Aromatic Oil

    Ao Lu1, Ming Xiong1, Chen Chen1, Liangjiang Li1, Haibei Tan1, Xiong Xu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1633-1646, 2024, DOI:10.32604/fdmp.2024.051010 - 23 July 2024

    Abstract Traditional asphalt rejuvenators, like aromatic oil (AO), are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS (styrene-butadiene-styrene) modified asphalt (SBSMA) binders and mixtures. However, these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS. In this study, a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate (PMDI) was used to assist the traditional AO asphalt rejuvenator. The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding… More > Graphic Abstract

    Physical-Rheological Properties and Performances of Rejuvenated (Styrene-Butadiene-Styrene) Asphalt with Polymerized-MDI and Aromatic Oil

  • Open Access

    ARTICLE

    An Investigation into the Performances of Cement Mortar Incorporating Superabsorbent Polymer Synthesized with Kaolin

    Xiao Huang1,2, Jin Yang3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1393-1406, 2024, DOI:10.32604/fdmp.2024.046360 - 27 June 2024

    Abstract Cement-based materials are fundamental in the construction industry, and enhancing their properties is an ongoing challenge. The use of superabsorbent polymers (SAP) has gained significant attention as a possible way to improve the performance of cement-based materials due to their unique water-absorption and retention properties. This study investigates the multifaceted impact of kaolin intercalation-modified superabsorbent polymers (K-SAP) on the properties of cement mortar. The results show that K-SAP significantly affects the cement mortar’s rheological behavior, with distinct phases of water absorption and release, leading to changes in workability over time. Furthermore, K-SAP alters the hydration More >

  • Open Access

    ARTICLE

    A Study on the Performances of Solar Air Collectors Having a Hemispherical Dimple on the Absorber Plate

    Shuilian Li1, Fan Zeng1, Xinli Wei2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 939-955, 2024, DOI:10.32604/fdmp.2023.043614 - 07 June 2024

    Abstract In order to increase the efficiency of solar air collectors, a new variant with a protrusion is proposed in this study, and its performances are analyzed from two points of view, namely, in terms of optics and thermodynamics aspects. By comparing and analyzing the light paths of the protrusion and the dimple, it can be concluded that when sunlight shines on the dimple, it is reflected and absorbed multiple times, whereas for the sunlight shining on the protrusion, there is no secondary reflection or absorption of light. When the lighting area and the properties of… More >

  • Open Access

    ARTICLE

    Analysis of Calcined Red Mud Properties and Related Mortar Performances

    Zhengfan Lyu1,3, Yulin Li2,3, Mengmeng Fan1,3,*, Yan Huang1, Chenguang Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 901-913, 2024, DOI:10.32604/fdmp.2023.043512 - 07 June 2024

    Abstract Red mud (RM) is a low-activity industrial solid waste, and its utilization as a resource is currently a hot topic. In this study, the micro characteristics of red mud at different calcination temperatures were analyzed using X-ray diffraction and scanning electron microscopy. The performance of calcined red mud was determined through mortar strength tests. Results indicate that high-temperature calcination can change the mineral composition and microstructure of red mud, and increase the surface roughness and specific surface area. At the optimal temperature of 700°C, the addition of calcined red mud still leads to a decrease More > Graphic Abstract

    Analysis of Calcined Red Mud Properties and Related Mortar Performances

  • Open Access

    ARTICLE

    A Numerical Study on the Effect of the Backflow Hole Position on the Performances of a Self-Priming Pump

    Dongwei Wang1,*, Lijian Cao1, Weidong Wang2, Jiajun Hu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1103-1122, 2024, DOI:10.32604/fdmp.2023.042654 - 07 June 2024

    Abstract A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance depends on the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effects of three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, and imp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid to enter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on the reflux liquid becomes… More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Topology Optimization Method Considering Multiple Structural Performances

    Wenjun Chen1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09096

    Abstract The rapid development of topology optimization has given birth to a large amount of different topology optimization methods, and each of them can manage a class of corresponding engineering problems. However, structures need to meet a variety of requirements in engineering application, such as lightweight and multiple load-bearing performance. To design composite structures that have multiple structural properties, a new multi-scale topology optimization method considering multiple structural performances is proposed in this paper. Based on the fitting functions of the result set and the bisection method, a new method to determine the weight coefficient is… More >

  • Open Access

    ARTICLE

    Off-Design Simulation of a CSP Power Plant Integrated with a Waste Heat Recovery System

    T. E. Boukelia1,2,*, A. Bourouis1, M. E. Abdesselem3, M. S. Mecibah3

    Energy Engineering, Vol.120, No.11, pp. 2449-2467, 2023, DOI:10.32604/ee.2023.030183 - 31 October 2023

    Abstract Concentrating Solar Power (CSP) plants offer a promising way to generate low-emission energy. However, these plants face challenges such as reduced sunlight during winter and cloudy days, despite being located in high solar radiation areas. Furthermore, their dispatch capacities and yields can be affected by high electricity consumption, particularly at night. The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant (PTPP) equipped with a waste heat recovery system. The study aims to compare the performances of this new layout with those of… More >

  • Open Access

    ARTICLE

    On the Effect of Mist Flow on the Heat Transfer Performances of a Three-CopperSphere Configuration

    Karema A. Hamad*, Yasser A. Mahmood

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2863-2875, 2023, DOI:10.32604/fdmp.2023.029049 - 18 September 2023

    Abstract The cooling of a (pebble bed) spent fuel in a high-temperature gas-cooled reactor (HTGR) is adversely affected by an increase in the temperature of the used gas (air). To investigate this problem, a configuration consisting of three copper spheres arranged in tandem subjected to a forced mist flow inside a cylindrical channel is considered. The heat transfer coefficients and related variations as a function of Reynolds number are investigated accordingly. The experimental results show that when compared to those with only airflow, the heat transfer coefficient of the spherical elements with mist flow (j = More >

Displaying 1-10 on page 1 of 58. Per Page