Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Analysis of Friction and Heat Transfer Characteristics of Tubes with Trapezoidal Cut Twisted Tape Inserts

    Shrikant Arunrao Thote*, Netra Pal Singh

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 711-722, 2023, DOI:10.32604/fdmp.2022.021651 - 29 September 2022

    Abstract The thermo-hydraulic properties of circular tubes with a twisted tape inside (used accordingly to induce turbulence and enhance heat transfer through the tube wall) are described for Reynolds Numbers ranging from 830 to 1990. Tapes twisted with the three distinct twist ratios are considered, namely, 6, 4.4 and 3. Air is used as the working fluid in several tests. For the sake of comparison, the standard tube with no insert is also examined. It is shown that in the presence of the twisted tape, the ‘frictional factor’, ‘Nusselt Number’ and the ‘thermal performance factor’ are More >

  • Open Access

    ARTICLE

    Performance Analysis of a Rooftop Hybrid Connected Solar PV System

    Hasan Falih, Ahmed J. Hamed, Abdul Hadi N. Khalifa*

    Energy Engineering, Vol.119, No.4, pp. 1729-1744, 2022, DOI:10.32604/ee.2022.021190 - 23 May 2022

    Abstract In the present work, a 5-kW hybrid PV solar system was installed on the roof of a house in Diyala, Iraq (33.77° N, 45.14° E elevation 44 m). The system consists of two strings, where each string consists of nine polycrystalline PV modules with 355 Wp in series, and the two strings are in parallel. The energy storage system (ESS) consists of two parallel strings, each with four 12 V and 150 Ah tubular deep cycle batteries in series. A hybrid inverter of 5 kW rated power was operated in different modes. The results showed that May’s monthly More > Graphic Abstract

    Performance Analysis of a Rooftop Hybrid Connected Solar PV System

Displaying 1-10 on page 1 of 2. Per Page