Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (85)
  • Open Access

    ARTICLE

    Optimization of Structure and Mechanical Performance Analysis of Double-Layer Hole Oil Boom in Rapid River Channels

    Liqiong Chen1, Jie Pang1, Kai Zhang1,*, Juemei Pang2, Haonan Liu3, Quan Fang1

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 937-952, 2025, DOI:10.32604/sdhm.2025.063177 - 30 June 2025

    Abstract In order to reduce the ecological environmental pollution and economic losses caused by oil spill accidents from cross-river oil pipelines, this paper studies the structures of oil containment booms used for intercepting oil spills in rapid rivers and proposes a new type of double-layer hole oil containment boom. By establishing a solid mechanics model, the geometric deformation and stress-strain distribution patterns of the double-layer hole oil containment boom under rapid flow velocities were analyzed. Additionally, the impact of the skirt angle, hole size, and porosity on the mechanical properties of the new oil containment boom More >

  • Open Access

    ARTICLE

    Performance Analysis of Foamed Fracturing Fluids Based on Microbial Polysaccharides and Surfactants in High-Temperature and High-Salinity Reservoirs

    Zhiqiang Jiang1, Zili Li1, Bin Liang2, Miao He1, Weishou Hu3, Jun Tang3, Chao Song4, Nanxin Zheng5,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1397-1416, 2025, DOI:10.32604/fdmp.2025.062737 - 30 June 2025

    Abstract Microbial polysaccharides, due to their unique physicochemical properties, have been shown to effectively enhance the stability of foam fracturing fluids. However, the combined application of microbial polysaccharides and surfactants under high-temperature and high-salinity conditions remain poorly understood. In this study, we innovatively investigate this problem with a particular focus on foam stabilization mechanisms. By employing the Waring blender method, the optimal surfactant-microbial polysaccharide blends are identified, and the foam stability, rheological properties, and decay behavior in different systems under varying conditions are systematically analyzed for the first time. The results reveal that microbial polysaccharides significantly More >

  • Open Access

    ARTICLE

    Performance Analysis of Natural Gas Polyethylene Pipes Based on the Arrhenius Equation

    Li Niu1, Yang Wang1,*, Nan Lin2, Yaoying Yue1, Wenbin Fu1, Elzat Tuhanjiang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1473-1487, 2025, DOI:10.32604/fdmp.2025.062623 - 30 June 2025

    Abstract With the widespread use of polyethylene (PE) materials in gas pipelines, the problem related to the aging of these pipes has attracted increasing attention. Especially under complex environmental conditions involving temperature, humidity, and pressure changes, PE pipes are prone to oxidative degradation, which adversely affects their performance and service life. This study investigates the aging behavior of PE pipes used for gas transport under the combined effects of temperature (ranging from 80°C to 110°C) and pressure (0, 0.1, 0.2, and 0.3 MPa). By assessing the characteristics and thermal stability of the aged pipes, relevant efforts… More >

  • Open Access

    ARTICLE

    Thermal Performance Analysis of Shell and Tube Heat Exchanger Using Hybrid Nanofluids Based on Al2O3, TiO2, and ZnO Nanoparticles

    Ans Ahmed Memon1, Laveet Kumar1,2,*, Abdul Ghafoor Memon1, Khanji Harijan1, Ahmad K. Sleiti2

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 833-856, 2025, DOI:10.32604/fhmt.2025.064805 - 30 June 2025

    Abstract Climate change, rising fuel prices, and fuel security are some challenges that have emerged and have grown worldwide. Therefore, to overcome these obstacles, highly efficient thermodynamic devices and heat recovery systems must be introduced. According to reports, much industrial waste heat is lost as flue gas from boilers, heating plants, etc. The primary objective of this study is to investigate and compare unary (Al2O3) thermodynamically, binary with three different combinations of nanoparticles namely (Al2O3 + TiO2, TiO2 + ZnO, Al2O3 + ZnO) and ternary (Al2O3 + TiO2 + ZnO) as a heat transfer fluid. Initially, three different types of… More > Graphic Abstract

    Thermal Performance Analysis of Shell and Tube Heat Exchanger Using Hybrid Nanofluids Based on Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, and ZnO Nanoparticles

  • Open Access

    ARTICLE

    Performance Analysis of Solar Porous Media Collector Integrated with Thermal Energy Storage Charged by CuFe2O4/Water Nanofluids Coil Tubes

    Ahmad Mola1, Sahira H. Ibrahim1, Nagham Q. Shari2, Hasanain A. Abdul Wahhab3,*

    Energy Engineering, Vol.122, No.6, pp. 2239-2255, 2025, DOI:10.32604/ee.2025.061590 - 29 May 2025

    Abstract High-efficiency solar energy systems are characterized by their designs, which primarily rely on effective concentration and conversion methods of solar radiation. Evaluation of the performance enhancement of flat plate solar collectors by integration with thermal energy storage could be achieved through simulation of proposed designs. The work aims to analyze a new solar collector integrated with a porous medium and shell and coiled tube heat exchanger. The heat transfer enhancement was investigated by varying the geometrical parameters in shell and helically coiled tubes operating with CuFe2O4/water with different volume fractions of 0.02%, 0.05%, and 0.1 vol.%.… More >

  • Open Access

    ARTICLE

    Mechanical Performance Analysis of Rubber Elastic Polymer-Polyurethane Reinforced Cement-Based Composite Grouting Materials

    Baoping Zou1,2, Jiahao Yin1,2, Chunhui Cao1,2,*, Xu Long3,*

    Journal of Polymer Materials, Vol.42, No.1, pp. 255-275, 2025, DOI:10.32604/jpm.2025.062081 - 27 March 2025

    Abstract The ongoing operation of subway systems makes existing tunnels vulnerable to deformations and structural damage caused by adjacent foundation pit construction. Such deformations-manifesting as horizontal displacement, heightened lateral convergence, and internal force redistribution-may significantly compromise subway operational safety. Grouting remediation has become a widely adopted solution for tunnel deformation control and structural reinforcement. Developing optimized grouting materials is crucial for improving remediation effectiveness, ensuring structural integrity, and maintaining uninterrupted subway operations. This investigation explores the substitution of fine mortar aggregates with 0.1 mm discarded rubber particles at varying concentrations (0%, 3%, 6%, 9%, 12%, and More >

  • Open Access

    ARTICLE

    Elastohydrodynamic Lubrication Performance of Curvilinear Cylindrical Gears Based on Finite Element Method

    Xuegang Zhang1,*, Yingjie Dong2, Xian Wei1,*, Ruiqi Wang1, Qi Zhang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1585-1609, 2025, DOI:10.32604/cmes.2025.059580 - 27 January 2025

    Abstract The fixed-setting face-milled curvilinear cylindrical gear features teeth that are arc-shaped along the longitudinal direction. Some researchers hypothesize that this arc-tooth may enhance the lubrication conditions of the gear. This study focuses on this type of gear, employing both finite element analysis (FEA) and analytical methods to determine the input parameters required for elastohydrodynamic lubrication (EHL) analysis. The effects of assembly errors, tooth surface modifications, load, and face-milling cutter radius on the lubrication performance of these gears are systematically investigated. The finite element model (FEM) of the gear pair is utilized to calculate the coordinates… More >

  • Open Access

    ARTICLE

    Performance Analysis of Machine Learning-Based Intrusion Detection with Hybrid Feature Selection

    Mohammad Al-Omari1, Qasem Abu Al-Haija2,*

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1537-1555, 2024, DOI:10.32604/csse.2024.056257 - 22 November 2024

    Abstract More businesses are deploying powerful Intrusion Detection Systems (IDS) to secure their data and physical assets. Improved cyber-attack detection and prevention in these systems requires machine learning (ML) approaches. This paper examines a cyber-attack prediction system combining feature selection (FS) and ML. Our technique’s foundation was based on Correlation Analysis (CA), Mutual Information (MI), and recursive feature reduction with cross-validation. To optimize the IDS performance, the security features must be carefully selected from multiple-dimensional datasets, and our hybrid FS technique must be extended to validate our methodology using the improved UNSW-NB 15 and TON_IoT datasets. More >

  • Open Access

    ARTICLE

    Performance Analysis of Curved Track G2T-FSO (Ground-to-Train Free Space Optical) Model under Various Weather Conditions

    Mohammed A. Alhartomi1,*, Mohammad F. L. Abdullah2, Wafi A. B. Mabrouk2, Mohammed S. M. Gismalla3, Ahmed Alzahmi1, Saeed Alzahrani1, Mohammad R. Altimania1, Mohammed S. Alsawat4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2087-2105, 2024, DOI:10.32604/cmes.2024.055679 - 31 October 2024

    Abstract The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces. However, current radio frequency (RF) technology cannot adequately meet this demand. In order to address the bandwidth constraint, a technique known as free space optics (FSO) has been proposed. This paper presents a mathematical derivation and formulation of curve track G2T-FSO (Ground-to-train Free Space Optical) model, where the track radius characteristics is 2667 m, divergence angle track is 1.5° for train velocity at V = 250 km/h. Multiple transmitter configurations are proposed to maximize More >

  • Open Access

    REVIEW

    Parametric Analysis and Design Considerations for Micro Wind Turbines: A Comprehensive Review

    Dattu Ghane*, Vishnu Wakchaure

    Energy Engineering, Vol.121, No.11, pp. 3199-3220, 2024, DOI:10.32604/ee.2024.050952 - 21 October 2024

    Abstract Wind energy provides a sustainable solution to the ever-increasing demand for energy. Micro-wind turbines offer a promising solution for low-wind speed, decentralized power generation in urban and remote areas. Earlier researchers have explored the design, development, and performance analysis of a micro-wind turbine system tailored for small-scale renewable energy generation. Researchers have investigated various aspects such as aerodynamic considerations, structural integrity, efficiency optimization to ensure reliable and cost-effective operation, blade design, generator selection, and control strategies to enhance the overall performance of the system. The objective of this paper is to provide a comprehensive design… More >

Displaying 11-20 on page 2 of 85. Per Page