Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (683)
  • Open Access

    ARTICLE

    SYSTEMATIC STRATEGY FOR MODELING AND OPTIMIZATION OF THERMAL SYSTEMS WITH DESIGN UNCERTAINTIES

    Po Ting Lin, Hae Chang Gea, Yogesh Jaluria*

    Frontiers in Heat and Mass Transfer, Vol.1, No.1, pp. 1-20, 2010, DOI:10.5098/hmt.v1.1.3003

    Abstract Thermal systems play significant roles in the engineering practice and our lives. To improve those thermal systems, it is necessary to model and optimize the design and the operating conditions. More importantly, the design uncertainties should be considered because the failures of the thermal systems may be very dangerous and produce large loss. This review paper focuses on a systematic strategy of modeling and optimizing of the thermal systems with the considerations of the design uncertainties. To demonstrate the proposed strategy, one of the complicated thermal systems, Chemical Vapor Deposition (CVD), is simulated, parametrically modeled, and optimized. The operating conditions,… More >

  • Open Access

    ARTICLE

    THE IMPACT OF THE RESONANCE TUBE ON PERFORMANCE OF A THERMOACOUSTIC STACK

    Channarong Wanthaa, Kriengkrai Assawamartbunluea,*

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-8, 2011, DOI:10.5098/hmt.v2.4.3006

    Abstract This paper presents a study of the impact of the resonance tube on performance of a thermoacoustic stack. The resonance tube is a key component of a standing-wave thermoacoustic refrigerator. The appropriated resonance tube’s length leads to an increase of performance of the stack in terms of the temperature difference. The results also indicate that the optimal operating frequency differs from the design based on the equation of a half-wavelength. The resonance tube length is elongated to compensate for some effects that occur in the resonance tube, especially when the stack is placed in the resonance tube. The relationship of… More >

  • Open Access

    ARTICLE

    THERMAL PERFORMANCE ENHANCEMENT OF PARAFFIN WAX WITH AL2O3 AND CuO NANOPARTICLES – A NUMERICAL STUDY

    A. Valan Arasua,*, Agus P. Sasmitob,†, Arun S. Mujumdarb

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-7, 2011, DOI:10.5098/hmt.v2.4.3005

    Abstract The heat transfer enhancement of paraffin wax, a cheap and widely used latent heat thermal energy storage material, using nanoparticles is investigated. The effects of nanoparticle volume fraction on both the melting and solidification rates of paraffin wax are analysed and compared for Al2O3 and CuO nanoparticles. Present results show that dispersing nanoparticles in smaller volumetric fractions increase the heat transfer rate. The enhancement in thermal performance of paraffin wax is greater for Al2O3 compared with that for CuO nanoparticles. More >

  • Open Access

    ARTICLE

    Performance Enhancement of XML Parsing Using Regression and Parallelism

    Muhammad Ali, Minhaj Ahmad Khan*

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 287-303, 2024, DOI:10.32604/csse.2023.043010

    Abstract The Extensible Markup Language (XML) files, widely used for storing and exchanging information on the web require efficient parsing mechanisms to improve the performance of the applications. With the existing Document Object Model (DOM) based parsing, the performance degrades due to sequential processing and large memory requirements, thereby requiring an efficient XML parser to mitigate these issues. In this paper, we propose a Parallel XML Tree Generator (PXTG) algorithm for accelerating the parsing of XML files and a Regression-based XML Parsing Framework (RXPF) that analyzes and predicts performance through profiling, regression, and code generation for efficient parsing. The PXTG algorithm… More >

  • Open Access

    ARTICLE

    Nonlinear Study on the Mechanical Performance of Built-Up Cold-Formed Steel Concrete-Filled Columns under Compression

    Oulfa Harrat1,*, Yazid Hadidane1, S. M. Anas2,*, Nadhim Hamah Sor3,4, Ahmed Farouk Deifalla5, Paul O. Awoyera6, Nadia Gouider1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3435-3465, 2024, DOI:10.32604/cmes.2023.044950

    Abstract Given their numerous functional and architectural benefits, such as improved bearing capacity and increased resistance to elastic instability modes, cold-formed steel (CFS) built-up sections have become increasingly developed and used in recent years, particularly in the construction industry. This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations (back-to-back, face-to-face, and box). These columns were joined by double-row rivets for the back-to-back and box configurations, whereas they were welded together for the face-to-face design. The built-up columns were filled with ordinary concrete of good strength. Finite element models were applied,… More > Graphic Abstract

    Nonlinear Study on the Mechanical Performance of Built-Up Cold-Formed Steel Concrete-Filled Columns under Compression

  • Open Access

    ARTICLE

    An Energy Trading Method Based on Alliance Blockchain and Multi-Signature

    Hongliang Tian, Jiaming Wang*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1611-1629, 2024, DOI:10.32604/cmc.2023.046698

    Abstract Blockchain, known for its secure encrypted ledger, has garnered attention in financial and data transfer realms, including the field of energy trading. However, the decentralized nature and identity anonymity of user nodes raise uncertainties in energy transactions. The broadcast consensus authentication slows transaction speeds, and frequent single-point transactions in multi-node settings pose key exposure risks without protective measures during user signing. To address these, an alliance blockchain scheme is proposed, reducing the resource-intensive identity verification among nodes. It integrates multi-signature functionality to fortify user resources and transaction security. A novel multi-signature process within this framework involves neutral nodes established through… More >

  • Open Access

    ARTICLE

    Performance Comparison of Hyper-V and KVM for Cryptographic Tasks in Cloud Computing

    Nader Abdel Karim1,*, Osama A. Khashan2,*, Waleed K. Abdulraheem3, Moutaz Alazab1, Hasan Kanaker4, Mahmoud E. Farfoura5, Mohammad Alshinwan5,6

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2023-2045, 2024, DOI:10.32604/cmc.2023.044304

    Abstract As the extensive use of cloud computing raises questions about the security of any personal data stored there, cryptography is being used more frequently as a security tool to protect data confidentiality and privacy in the cloud environment. A hypervisor is a virtualization software used in cloud hosting to divide and allocate resources on various pieces of hardware. The choice of hypervisor can significantly impact the performance of cryptographic operations in the cloud environment. An important issue that must be carefully examined is that no hypervisor is completely superior in terms of performance; Each hypervisor should be examined to meet… More >

  • Open Access

    ARTICLE

    RPL-Based IoT Networks under Decreased Rank Attack: Performance Analysis in Static and Mobile Environments

    Amal Hkiri1,*, Mouna Karmani1, Omar Ben Bahri2, Ahmed Mohammed Murayr2, Fawaz Hassan Alasmari2, Mohsen Machhout1

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 227-247, 2024, DOI:10.32604/cmc.2023.047087

    Abstract The RPL (IPv6 Routing Protocol for Low-Power and Lossy Networks) protocol is essential for efficient communication within the Internet of Things (IoT) ecosystem. Despite its significance, RPL’s susceptibility to attacks remains a concern. This paper presents a comprehensive simulation-based analysis of the RPL protocol’s vulnerability to the decreased rank attack in both static and mobile network environments. We employ the Random Direction Mobility Model (RDM) for mobile scenarios within the Cooja simulator. Our systematic evaluation focuses on critical performance metrics, including Packet Delivery Ratio (PDR), Average End to End Delay (AE2ED), throughput, Expected Transmission Count (ETX), and Average Power Consumption… More >

  • Open Access

    ARTICLE

    A Reverse Path Planning Approach for Enhanced Performance of Multi-Degree-of-Freedom Industrial Manipulators

    Zhiwei Lin1, Hui Wang1,*, Tianding Chen1, Yingtao Jiang2, Jianmei Jiang3, Yingpin Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1357-1379, 2024, DOI:10.32604/cmes.2023.045990

    Abstract In the domain of autonomous industrial manipulators, precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance, such as handling, heat sealing, and stacking. While Multi-Degree-of-Freedom (MDOF) manipulators offer kinematic redundancy, aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites, their path planning entails intricate multi-objective optimization, encompassing path, posture, and joint motion optimization. Achieving satisfactory results in practical scenarios remains challenging. In response, this study introduces a novel Reverse Path Planning (RPP) methodology tailored for industrial manipulators. The approach commences by conceptualizing the manipulator’s end-effector as an… More > Graphic Abstract

    A Reverse Path Planning Approach for Enhanced Performance of Multi-Degree-of-Freedom Industrial Manipulators

  • Open Access

    ARTICLE

    Performance Prediction Based Workload Scheduling in Co-Located Cluster

    Dongyang Ou, Yongjian Ren, Congfeng Jiang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2043-2067, 2024, DOI:10.32604/cmes.2023.029987

    Abstract Cloud service providers generally co-locate online services and batch jobs onto the same computer cluster, where the resources can be pooled in order to maximize data center resource utilization. Due to resource competition between batch jobs and online services, co-location frequently impairs the performance of online services. This study presents a quality of service (QoS) prediction-based scheduling model (QPSM) for co-located workloads. The performance prediction of QPSM consists of two parts: the prediction of an online service’s QoS anomaly based on XGBoost and the prediction of the completion time of an offline batch job based on random forest. On-line service… More >

Displaying 21-30 on page 3 of 683. Per Page